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 2 

Abstract (73 words) 27 

Staphylococcus aureus biofilms are a significant problem in healthcare settings, in 28 

part, owing to the presence of a non-dividing, antibiotic tolerant sub-population. Here 29 

we evaluated treatment of S. aureus UAMS-1 biofilms with HT61, a quinoline 30 

derivative shown to be effective against non-dividing Staphylococcal spp. HT61 was 31 

effective in reducing biofilm viability, associated with increased expression of cell 32 

wall stress and division proteins, confirming its potential as a treatment for S. aureus 33 

biofilm infections. 34 

 35 

Keywords 36 

Staphylococcus aureus, biofilm, HT61, proteomics, antimicrobial tolerance 37 

 38 

Antimicrobial tolerant Staphylococcus aureus biofilms are commonly associated with 39 

chronic infections, particularly of the skin and soft tissue (1, 2). Biofilms are highly 40 

heterogeneous, containing cellular sub-populations that are non-dividing and/or are 41 

metabolically inactive. As a large proportion of clinically administered antimicrobials 42 

target actively dividing cells this adopted quiescent state renders these 43 

antimicrobials ineffective, thus allowing biofilm bacteria to survive therapeutic 44 

intervention and contribute to chronic disease (3). Ineffective treatment can also 45 

promote the evolution of resistance mechanisms within bacterial populations. In S. 46 

aureus, commonly evolved resistance mechanisms can render -lactams such as 47 

penicillin, and glycopeptides such as vancomycin ineffective (MRSA and VRSA, 48 

respectively) (4, 5). The combination of biofilm tolerance and evolved resistance 49 

mechanisms means that the development of novel antimicrobials targeting biofilm 50 

bacteria is highly desirable.  51 
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 3 

 52 

HT61 is quinoline derivative that has demonstrated efficacy against both dividing and 53 

non-dividing planktonic cultures of Staphylococcal spp. (6–8). HT61 preferentially 54 

binds to anionic staphylococcal membrane components, causing structural instability 55 

within the membrane and cell depolarisation (6, 8). Given its effectiveness against 56 

non-dividing cells, HT61 represents an ideal candidate for targeting the dormant sub-57 

populations present in S. aureus biofilms.  58 

 59 

In this study, we investigated the efficacy of HT61 against established in vitro S. 60 

aureus biofilms. We also utilised a quantitative label-free proteomic approach to 61 

identify changes in protein expression following treatment of planktonic and biofilm 62 

cultures with sub-inhibitory and inhibitory concentrations of HT61, to further elucidate 63 

cellular processes linked to HT61’s mechanism of action. Understanding its 64 

mechanism of action further could provide insight into effective treatments for biofilm-65 

associated chronic infections. 66 

 67 

S. aureus UAMS-1, a methicillin sensitive osteomyelitis isolate (9), was used in all 68 

experiments. Susceptibility of planktonic and biofilm cultures of S. aureus to a range 69 

of HT61 (Helperby Therapeutics) and vancomycin (Hospira Inc) concentrations (0.5 70 

to 128 mg/L) was compared. HT61 is being developed as a topical agent and 71 

vancomycin has been used extensively as a successful topical treatment for chronic 72 

wounds and acute surgical site infections (10–12). All experiments were performed 73 

in tryptic soy broth, (TSB, Oxoid), using a starting inoculum of 105 cells ml-1, diluted 74 

from an overnight culture. All cultures were performed at 37 C, with agitation 75 

(planktonic: 120 rpm, biofilm: 50 rpm).  76 
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 4 

 77 

Planktonic minimum inhibitory concentrations (MIC, minimum concentration to inhibit 78 

growth) were obtained using the broth microdilution method (7) and minimum 79 

bactericidal concentrations (MBC, concentration to elicit a 99.9% reduction in 80 

viability) were obtained after subsequent plating and colony forming unit (cfu) 81 

enumeration on tryptic soy agar (TSA). Biofilm MBCs were calculated as per Howlin 82 

et al (2015) (13). Briefly, biofilms were cultured in Nunc-coated 6 well plates, 83 

(Thermo-Fisher, UK), for 72 hours, with media replacements every 24 hours prior to 84 

antibiotic treatment. Following 72 hours, spent media was replaced with TSB 85 

containing the appropriate antibiotic dilution. Biofilms were incubated for a further 24 86 

hours. The media was then removed, the biofilms rinsed twice with HBSS to remove 87 

non-adhered cells, and the biofilms detached and suspended in 1 ml HBSS using a 88 

cell scraper. Suspensions were serially diluted, plated onto TSA and cfus were 89 

enumerated following a final 24 hour incubation.  90 

 91 

The planktonic MIC and MBC values for HT61 were 16 mg/L and 32 mg/L 92 

respectively in comparison to 4 mg/L for both the vancomycin MIC and MBC. 93 

Towards biofilms, HT61 presented with improved killing of S. aureus UAMS-1 94 

biofilms compared to vancomycin, demonstrated by a biofilm MBC half that of 95 

vancomycin (32 mg/L compared to 64 mg/L). At the maximum concentration tested 96 

(128 mg/L), HT61 caused a further 1.3 log reduction in CFUs compared to 97 

vancomycin utilised at the same concentration (Figure 1). The mechanism of action 98 

for vancomycin necessitates active cell wall turnover (14) so it is possible that its 99 

reduced biofilm efficacy can be attributed to the presence of a dormant cell 100 

subpopulation. As HT61 was equally effective against biofilms and planktonic 101 
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 5 

cultures, this may suggest that its activity against non-dividing cells, as per 102 

references (6–8), confers an advantage against the biofilm phenotype.  103 

 104 

The cellular response of planktonic and biofilm cultures following treatment with 0, 4 105 

or 16 mg/L HT61 was then investigated using liquid chromatography mass 106 

spectrometryElevated Energy, (UPLC/MSE). These HT61 concentrations were chosen as 107 

they were below the calculated planktonic and biofilm MBCs. Use of higher 108 

concentrations would have been highly bactericidal and led to the accumulation of 109 

dead cells and unwanted noise within the proteome datasets. Full details of the 110 

proteomic methods, including the method of protein isolation and instrument settings 111 

utilised, can be found in the supplementary methods. Briefly, planktonic cultures 112 

were grown in TSB for 12 hours at 37 C with the appropriate HT61 concentrations. 113 

Biofilms were cultured for 72 hours as described, prior to replacement of the used 114 

media with TSB supplemented with  HT61 at the same concentrations. Biofilms were 115 

then incubated for a further 12 hours before being harvested and suspended into 1 116 

ml HBSS. Following mechanical lysis of the cells, proteins were extracted, purified 117 

and normalised to a final concentration of 0.25 g/L in 3% acetonitrile, 0.1 % formic 118 

acid (v/v). 119 

 120 

Prepared samples were analysed using a Waters Synapt G2Si high definition mass 121 

spectrometer coupled to a nanoAcquity UPLC system using 4 µl of peptide extract. 122 

Processed data were searched against the Uniprot S. aureus MN8 reference 123 

database (accessed 25/01/2018) and further analysed using a combination of uniprot 124 

database searches (www.uniprot.org, accessed between 01/05/18 and 07/07/18) 125 

and gene ontology analysis using GeoPANTHER(15). Each data set was normalised 126 
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 6 

to the top 200 most abundant proteins (per ng) and proteins were suitable for 127 

quantitive analysis if the following inclusion criteria were met; present in all 3 128 

biological replicates, false discovery rate (FDR)  1%, sequence coverage  5%. 129 

Differential expression was defined as an expression fold-change of  1.5 and  130 

0.667 with p  0.05, calculated using a one-tailed student t-test.  131 

 132 

A total of 1,448 proteins were identified across planktonic and biofilm cultures. For 133 

HT61 treated planktonic cultures, 568 (4 mg/L) and 495 (16 mg/L) proteins met the 134 

inclusion criteria for quantitative analysis. For HT61 treated biofilm cultures, 461 (4 135 

mg/L) and 498 (16 mg/L) proteins met the inclusion criteria (Table 1). HT61 136 

treatment resulted in the differential expression of proteins involved in a variety of 137 

functions including cell wall biosynthesis, DNA synthesis, and metabolism. (see 138 

Tables S1 and S2). Interestingly, metabolic processes were generally decreased 139 

which may be an attempt by the cell to limit HT61 damage, similar to the proteomic 140 

response of MSSA to oxacillin (16). 141 

 142 

Treatment of planktonic cultures with sub-MIC HT61 (4 mg/L), revealed the 143 

upregulation of MurD and MurI, two cell wall biosynthesis associated proteins 144 

required for the incorporation of D-glutamate into cell wall peptidoglycan (17) (Table 145 

2). Increasing the concentration of HT61 from 4 mg/L to 16 mg/L led to upregulation 146 

of 93% (14/15) of proteins associated with cell wall biosynthesis, including 6 147 

components of the mur ligase pathway (MurACDEFI, 2.63 mean fold increase), 148 

FemA-like protein and FemB, which are required for peptidoglycan crosslinking (2.53 149 

mean fold increase) and a 2.19 fold upregulation of VraR, the regulator of the cell 150 

wall stress (CWS) stimulon, which is activated following stress to the cell envelope 151 
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 7 

(18). Proteins associated with DNA synthesis were also affected by HT61 treatment 152 

(Table 2). Sub-inhibitory treatment of planktonic cultures led to increased expression 153 

of DnaA and DnaX, indicating a general rise in DNA synthesis (mean 1.84 fold 154 

increase). Cell cycle associated proteins, FtsA and Obg were also upregulated 155 

(mean 2.35 fold increase) and four downregulated (GpsB, GroL, Tig and DivlVA 156 

domain protein, mean 0.28 fold decrease). Treatment with 16 mg/L HT61 led to the 157 

increased expression of proteins associated with DNA maintenance, including three 158 

protein with helicase activity (PcrA, GyrA and ParE).  159 

 160 

Biofilms treated with HT61 presented with a similar, albeit more muted response 161 

(Table 1). Notably, when treated with HT61 at 16 mg/L, increased expression was 162 

observed for both MurD (1.59 fold) and PcrA (2.13 fold), similar to planktonic cultures 163 

(Table 2). It is possible that the response across both planktonic and biofilm cultures 164 

is a result of SOS response activation. The SOS response is activated upon DNA 165 

damage and due to its quinolone-like structure, it is possible that HT61 is 166 

moonlighting as a DNA gyrase inhibitor, or other SOS-response inducer, leading to a 167 

cellular response much like that induced by quinolone antimicrobials, such as 168 

ciprofloxacin (19–21).  169 

 170 

As well as being part of the CWS stimulon, a number of the differentially expressed 171 

cell wall biosynthesis components, DNA synthesis/maintenance genes and cell cycle 172 

components comprise a segment of the division cell wall, dcw cluster, a family of 173 

genes that are vital for maintaining cell shape and integrity (22, 23). Previous studies 174 

have shown that HT61 preferentially binds to anionic phospholipids in the S. aureus 175 

cell membrane, in a manner similar to the lipopeptide antimicrobial, daptomycin (8, 176 
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 8 

24, 25). Daptomycin inserts into the cell membrane, leading to alterations in 177 

membrane curvature, potassium efflux and membrane depolarisation (24, 25), with 178 

membrane curvature shown to impair cell wall synthesis by affecting the cell wall 179 

biosynthesis protein, MurG (26). In addition, transcriptional profiling has also shown 180 

that daptomycin upregulates components of the cell wall stimulon, suggesting a 181 

secondary mechanism of action and/or interactions with the associated components 182 

(27). Altered expression of the dcw cluster has also been documented in biofilms of 183 

Haemophilus influenzae following D-methionine treatment, contributing to altered cell 184 

morphology (22). It is possible that HT61 functions in a similar manner to these 185 

examples, either by directly interfering with cell wall biosynthesis machinery or 186 

placing stress directly on the cell membrane, interfering with the cell wall machinery. 187 

 188 

To conclude, we have demonstrated that HT61 is more effective than vancomycin at 189 

treating in vitro biofilms of S. aureus, although whether this translates to efficacy in 190 

vivo needs to be determined. Furthermore, the safety and tolerated dose of HT61 will 191 

need to be evaluated in order to determine whether it is a superior therapy to 192 

vancomycin in a clinical setting. We have also shown that HT61 influences the 193 

expression of the CWS stimulon, dcw cluster, in line with its predicted mechanism of 194 

action. Similar to other quinoline-like compounds it may also stimulate the SOS 195 

response.   196 
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Table 1: Summary of differential protein expression between untreated, sub-MIC (4 
mg/L), and MIC (16 mg/L) treated S. aureus planktonic and biofilm cultures. Inclusion 
criteria for quantitative analysis and comparison was set at 3 peptide matches, false 

discovery rate (FDR)  1%, sequence coverage  5%, with p  0.05. 

Planktonic 
HT61 

Concentration 
Unchanged 

Up 
Regulated 

Down 
Regulated 

Total 

4 mg/L 
540 

(88.7%) 
39  

(6.9%) 
25 

(4.4%) 
568 

16 mg/L 
270 

(54.5%) 
103 

(20.8%) 
122 

(24.6%) 
495 

     
Biofilm 

HT61 
Concentration 

Unchanged Up Down Total 

4 mg/L 
436 

(94.6%) 
3 

(0.7%) 
20 

(4.3%) 
461 

16 mg/L 
472 

(94.8%) 
9 

(1.8%) 
17 

(3.4%) 
498 
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Table 2: Differentially expressed proteins associated with the dcw and cell wall stimulon in S. aureus following treatment of 
planktonic cultures with HT61. Expression ratios reflect changes in expression between untreated cultures and those treated with 
either sub-MIC (4 mg/L) or MIC (16 mg/L) concentrations of HT61. Differential expression in biofilms indicated in brackets. 

Differential expression is defined as a fold change  1.5 for upregulation (green cells) and  0.667 for down regulation (red cells). 
Grey cells indicate no change in expression. Empty cells – proteins not identified.  

    
Expression Ratio 

 
Accession Number Protein Name Gene Sub-MIC MIC 

Cell Cycle 

A0A0E1X830_STAAU Cell division protein FtsA ftsA 1.38 1.66 

A0A0E1X718_STAAU GTPase Obg cgtA 1.30 3.04 

A0A0E1X5J2_STAAU Cell cycle protein GpsB gpsB 1.10 0.20 

A0A0E1XAY0_STAAU 60 kDa chaperonin groL 1.13 0.29 

A0A0E1XGT1_STAAU DivIVA domain protein HMPREF0769_12587 1.05 0.29 

A0A0E1X4P6_STAAU Trigger factor tig 1.01 0.34 

Cell Wall Biosynthesis 

A0A0E1XHI9_STAAU DltD central region dltd 1.78 2.51 

A0A0E1X5R6_STAAU FemAB family protein (FemA) HMPREF0769_12373  (femA) 1.05 1.82 

A0A0E1XIT0_STAAU UDP-N-acetylglucosamine 1-carboxyvinyltransferase murA1 0.98 2.05 

A0A0E1XAN0_STAAU UDP-N-acetylglucosamine 1-carboxyvinyltransferase murA2 1.12 2.83 

A0A0E1X4D8_STAAU UDP-N-acetylmuramate--L-alanine ligase murC 
 

2.40 

A0A0E1X8P8_STAAU UDP-N-acetylmuramoylalanine--D-glutamate ligase murD 1.84 3.43 (1.59 Biofilm) 

A0A0E1X6V3_STAAU UDP-N-acetylmuramoyl-L-alanyl-D-glutamate--L-lysine ligase murE 1.05 1.76 

A0A0E1XIV1_STAAU UDP-N-acetylmuramoyl-tripeptide--D-alanyl-D-alanine ligase murF 1.33 2.31 

A0A0E1X8U4_STAAU Glutamate racemase murI 1.52 3.62 

A0A0E1XKB3_STAAU Ribulose-5-phosphate reductase tarJ 1.12 2.58 

A0A0E1XJG3_STAAU Response regulator protein VraR vraR 
 

2.19 

A0A0E1X974_STAAU Mur ligase middle domain protein HMPREF0769_11280 1.32 2.67 

A0A0E1X785_STAAU D-alanine--D-alanyl carrier protein ligase dltA 1.15 1.92 
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A0A0E1XG48_STAAU Aminoacyltransferase FemB femB 0.99 3.24 

A0A0E1X6S7_STAAU Mannosyl-glycoprotein endo-beta-N-acetylglucosaminidase HMPREF0769_12730 0.89 0.63 

DNA 
Maintenance/Synthesis 

A0A0E1XAS7_STAAU ATP-dependent DNA helicase pcrA 1.31 3.07 (2.13 Biofilm) 

A0A0E1X928_STAAU DNA ligase ligA 1.29 1.73 

A0A0E1XAK8_STAAU Chromosomal replication initiator protein DnaA dnaA 2.07 2.90 

A0A0E1XB29_STAAU DNA polymerase III subunit gamma/tau dnaX 1.60 2.07 

A0A0E1X6I5_STAAU DNA polymerase I polA 1.37 1.51 

A0A0E1XAK2_STAAU DNA gyrase subunit A gyrA 1.12 1.55 

A0A0E1X7H6_STAAU DNA topoisomerase 4 subunit B parE 1.30 3.34 

A0A0E1XFV3_STAAU DNA-binding protein HU hup 0.91 0.33 

A0A0E1X9G8_STAAU Nucleoid-associated protein HMPREF0769_10004 HMPREF0769_10004 
 

0.15 
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Figure 1: Log Reduction in S. aureus UAMS-1 viable counts of an established 72 hour biofilm following treatment with 

HT61 and vancomycin. HT61 consistently elicited a greater log reduction in CFU counts than vancomycin, demonstrating 

its potential as an antibiofilm agent. A higher value indicates a greater log reduction in CFUs. n = 3. Error bars indicate 

standard deviation. Statistical analyses were performed using R version 3.6.0 and figures were plotted using ggplot2 and 

cowplot [25–27] 
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