452 research outputs found

    SAT-based Explicit LTL Reasoning

    Full text link
    We present here a new explicit reasoning framework for linear temporal logic (LTL), which is built on top of propositional satisfiability (SAT) solving. As a proof-of-concept of this framework, we describe a new LTL satisfiability tool, Aalta\_v2.0, which is built on top of the MiniSAT SAT solver. We test the effectiveness of this approach by demonnstrating that Aalta\_v2.0 significantly outperforms all existing LTL satisfiability solvers. Furthermore, we show that the framework can be extended from propositional LTL to assertional LTL (where we allow theory atoms), by replacing MiniSAT with the Z3 SMT solver, and demonstrating that this can yield an exponential improvement in performance

    Sharper and Simpler Nonlinear Interpolants for Program Verification

    Full text link
    Interpolation of jointly infeasible predicates plays important roles in various program verification techniques such as invariant synthesis and CEGAR. Intrigued by the recent result by Dai et al.\ that combines real algebraic geometry and SDP optimization in synthesis of polynomial interpolants, the current paper contributes its enhancement that yields sharper and simpler interpolants. The enhancement is made possible by: theoretical observations in real algebraic geometry; and our continued fraction-based algorithm that rounds off (potentially erroneous) numerical solutions of SDP solvers. Experiment results support our tool's effectiveness; we also demonstrate the benefit of sharp and simple interpolants in program verification examples

    Generating EQ-5D-3L health utility scores from the Edinburgh Postnatal Depression Scale: a perinatal mapping study

    Get PDF
    Background: Perinatal depression (PND) describes depression experienced by parents during pregnancy or in the first year after a baby is born. The EQ-5D instrument (a generic measure of health status) is not often collected in perinatal research, however disease-specific measures, such as the Edinburgh Postnatal Depression Scale (EPDS) are widely used. Mapping can be used to estimate generic health utility index values from disease-specific measures like the EPDS. Objective: To develop a mapping algorithm to estimate EQ-5D utility index values from the EPDS. Methods: Patient-level data from the BaBY PaNDA study (English observational cohort study) provided 1068 observations with paired EPDS and EQ-5D (3-level version; EQ-5D-3L) responses. We compared the performance of six alternative regression model types, each with four specifications of covariates (EPDS score and age: base, squared, and cubed). Model performance (ability to predict utility values) was assessed by ranking mean error, mean absolute error, and root mean square error. Algorithm performance in 3 external datasets was also evaluated. Results: There was moderate correlation between EPDS score and utility values (coefficient: – 0.42). The best performing model type was a two-part model, followed by ordinary least squared. Inclusion of squared and cubed covariates improved model performance. Based on graphs of observed and predicted utility values, the algorithm performed better when utility was above 0.6. Conclusions: This direct mapping algorithm allows the estimation of health utility values from EPDS scores. The algorithm has good external validity but is likely to perform better in samples with higher health status

    A Laser Driven Grating Linac

    Get PDF
    The fields induced over a grating exposed to plane parallel light are explored. It is shown that acceleration is possible if either the particles travel skew to the grating lines, or if the radiation is falling at a skew angle onto the grating. A general theory of diffraction in this skew case is given. In one particular case numerical solutions are worked out for some deep grating. It is found that accelerating fields larger even than the initial fields can be obtained, the limit being set by resistive losses on the grating surface. Simple calculations are made to see what accelerating fields might be obtained using CO/sub 2/ lasers. Accelerations of 2 or 20 GeV per meter seem possible depending on whether the grating is allowed to be destroyed or not. Power requirements, injection and focussing are briefly discussed and no obvious difficulties are seen. It is concluded, therefore, that the proposed mechanism should be considered as a good candidate for the next generation of particle accelerators

    Incorporation of calcium in glasses: a key to understand the vitrification of sewage sludge

    Get PDF
    The quantity of sewage sludge generated daily by wastewater treatment plants represents a major environmental problem and a financial burden for plant operators. Valorization strategies focusing on reusing sewage sludge as a raw material are currently developed. Vitrification can help us reduce the volume of waste and binds the components in the structure of chemically stable glasses and glass‐ceramics. In this study, the vitrification of sewage sludge inside a basaltic rock has been simulated by producing glasses and a glass‐ceramic from basalt enriched in calcium that lie between the stability fields of pyroxene and melilite in the system CaO‐MgO‐SiO2‐Al2O3. CaO addition causes the oxidation of the melt at above the liquidus, increases the crystallization temperature, decreases the melting temperature and improves the microhardness of the glasses Glass‐ceramic processes improves the properties of the Ca‐doped basalt glass. The microhardness of the glass (8.2 GPa) and the glass‐ceramic (8.6 GPa) and leaching tests (in the ppb range) place both the glass and the glass‐ceramics at the high end of the mechanical properties and chemical resistance of ceramic tiles for the building industry

    A Configurable CEGAR Framework with Interpolation-Based Refinements

    Get PDF
    International audienceCorrectness of software components in a distributed system is a key issue to ensure overall reliability. Formal verification techniques such as model checking can show design flaws at early stages of development. Abstraction is a key technique for reducing complexity by hiding information, which is not relevant for verification. Counterexample-Guided Abstraction Refinement (CEGAR) is a verification algorithm that starts from a coarse abstraction and refines it iteratively until the proper precision is obtained. Many abstraction types and refinement strategies exist for systems with different characteristics. In this paper we show how these algorithms can be combined into a configurable CEGAR framework. In our framework we also present a new CEGAR configuration based on a combination of abstractions, being able to perform better for certain models. We demonstrate the use of the framework by comparing several configurations of the algorithms on various problems, identifying their advantages and shortcomings

    Automatically extracting functionally equivalent proteins from SwissProt

    Get PDF
    In summary, FOSTA provides an automated analysis of annotations in UniProtKB/Swiss-Prot to enable groups of proteins already annotated as functionally equivalent, to be extracted. Our results demonstrate that the vast majority of UniProtKB/Swiss-Prot functional annotations are of high quality, and that FOSTA can interpret annotations successfully. Where FOSTA is not successful, we are able to highlight inconsistencies in UniProtKB/Swiss-Prot annotation. Most of these would have presented equal difficulties for manual interpretation of annotations. We discuss limitations and possible future extensions to FOSTA, and recommend changes to the UniProtKB/Swiss-Prot format, which would facilitate text-mining of UniProtKB/Swiss-Prot

    NuRV: A nuXmv Extension for Runtime Verification

    Get PDF
    We present NuRV, an extension of the nuXmv model checker for assumption-based LTL runtime verification with partial observability and resets. The tool provides some new commands for online/offline monitoring and code generations into standalone monitor code. Using the online/offline monitor, LTL properties can be verified incrementally on finite traces from the system under scrutiny. The code generation currently supports C, C++, Common Lisp and Java, and is extensible. Furthermore, from the same internal monitor automaton, the monitor can be generated into SMV modules, whose characteristics can be verified by Model Checking using nuXmv. We show the architecture, functionalities and some use scenarios of NuRV, and we compare the performance of generated monitor code (in Java) with those generated by a similar tool, RV-Monitor. We show that, using a benchmark from Dwyer's LTL patterns, besides the capacity of generating monitors for long LTL formulae, our Java-based monitors are about 200x faster than RV-Monitor at generation-time and 2–5x faster at runtime

    Electron-Spin Excitation Coupling in an Electron Doped Copper Oxide Superconductor

    Full text link
    High-temperature (high-Tc) superconductivity in the copper oxides arises from electron or hole doping of their antiferromagnetic (AF) insulating parent compounds. The evolution of the AF phase with doping and its spatial coexistence with superconductivity are governed by the nature of charge and spin correlations and provide clues to the mechanism of high-Tc superconductivity. Here we use a combined neutron scattering and scanning tunneling spectroscopy (STS) to study the Tc evolution of electron-doped superconducting Pr0.88LaCe0.12CuO4-delta obtained through the oxygen annealing process. We find that spin excitations detected by neutron scattering have two distinct modes that evolve with Tc in a remarkably similar fashion to the electron tunneling modes in STS. These results demonstrate that antiferromagnetism and superconductivity compete locally and coexist spatially on nanometer length scales, and the dominant electron-boson coupling at low energies originates from the electron-spin excitations.Comment: 30 pages, 12 figures, supplementary information include
    • 

    corecore