
A Configurable CEGAR Framework
with Interpolation-Based Refinements

Ákos Hajdu1,2, Tamás Tóth2,⋆, András Vörös1,2, and István Majzik2
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Correctness of software components in a distributed system
is a key issue to ensure overall reliability. Formal verification techniques
such as model checking can show design flaws at early stages of devel-
opment. Abstraction is a key technique for reducing complexity by hid-
ing information, which is not relevant for verification. Counterexample-
Guided Abstraction Refinement (CEGAR) is a verification algorithm
that starts from a coarse abstraction and refines it iteratively until the
proper precision is obtained. Many abstraction types and refinement
strategies exist for systems with different characteristics. In this paper we
show how these algorithms can be combined into a configurable CEGAR
framework. In our framework we also present a new CEGAR configu-
ration based on a combination of abstractions, being able to perform
better for certain models. We demonstrate the use of the framework by
comparing several configurations of the algorithms on various problems,
identifying their advantages and shortcomings.

1 Introduction

As critical distributed systems, including safety-critical embedded systems and
cloud applications are becoming more and more prevalent, assuring their correct
operation is gaining increasing importance. Correctness of software components
in a distributed system is a key issue to ensure overall reliability. Formal veri-
fication methods such as model checking can show design flaws at early stages
of development. However, a typical drawback of using formal verification meth-
ods is their high computational complexity. Abstraction is a generic technique
for reducing complexity by hiding information which is not relevant for verifi-
cation. However, finding the proper precision of abstraction is a difficult task.
Counterexample-Guided Abstraction Refinement (CEGAR) is an automatic ver-
ification algorithm that starts with a coarse abstraction and refines it iteratively
until the proper precision is obtained [6]. CEGAR-based algorithms have been
successfully applied for both hardware [6], [8] and software [1], [11] verification.
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CEGAR can be defined for various abstraction types including predicate [6], [13]
and explicit value abstraction [1], [8]. There are several refinement strategies as
well, many of them being based on Craig [17] or sequence [19] interpolation.

In our paper we describe a configurable CEGAR framework that is able
to incorporate both predicate abstraction and explicit value abstraction, along
with Craig and sequence interpolation-based refinements. We use this framework
to extend predicate abstraction with explicit values at the initial abstraction,
producing better results for certain models. We also implemented a prototype
of the algorithms and techniques in order to evaluate their performance. In our
framework we compare different CEGAR configurations on various (software and
hardware) models and identify their advantages and shortcomings.

The rest of the paper is organized as follows. Section 2 introduces the prelim-
inaries of our work. Section 3 presents related work in the field of CEGAR-based
model checking. Section 4 describes our framework with our new extension. Sec-
tion 5 evaluates the algorithms and finally, Section 6 concludes our work.

2 Background

This section introduces the preliminaries of our work. First, we present sym-
bolic transition systems as the formalism used in our work (Section 2.1). Then
we describe the model checking problem (Section 2.2) and we also introduce
interpolation (Section 2.3), a mathematical tool widely used in verification.

2.1 Symbolic Transition Systems

In our work we describe models using symbolic transition systems, which offer
a compact way of representing the set of states, transitions and initial states
using first order logic (FOL) variables and formulas. Given a set of variables
V = {v1, v2, . . . , vn}, let V ′ and Vi represent the primed and indexed version
of the variables, i.e., V ′ = {v′1, v′2, . . . , v′n} and Vi = {v1,i, v2,i, . . . , vn,i}. Given
a formula ϕ over V , let ϕ′ and ϕi denote the formulas obtained by replacing
V with V ′ and Vi in ϕ respectively, e.g., if ϕ = x < y then ϕ′ = x′ < y′ and
ϕ2 = x2 < y2. Given a formula ϕ over V ∪ V ′, let ϕi,j denote the formula
obtained by replacing V with Vi and V ′ with Vj in ϕ, e.g., if ϕ = x′ .

= x + 1
then ϕ3,5 = x5

.
= x3+1. Given a formula ϕ let var(ϕ) denote the set of variables

appearing in ϕ, e.g., var(x < y + 1) = {x, y}.

Definition 1 (Symbolic transition system). A symbolic transition system
is a tuple T = (V, Inv ,Tran, Init), where

– V = {v1, v2, . . . , vn} is the set of variables with domains Dv1 , Dv2 , . . . , Dvn ,
– Inv is the invariant formula over V , which must hold for every state,3

3 The invariant formula should not be confused with an invariant property, which
is checked whether it holds for every reachable state. The invariant formula only
restricts the possible set of states regardless of reachability. For example, an integer
variable x with range [2; 5] can be defined with domain Z and invariant 2 ≤ x∧x ≤ 5.



– Tran is the transition formula over V ∪ V ′, which describes the transition
relation between the actual state (V ) and the successor state (V ′),

– Init is the initial formula over V , which defines the set of initial states.

A concrete state s is a (many sorted) interpretation that assigns a value s(vi) =
di ∈ Dvi to each variable vi ∈ V of its domain Dvi . A state can also be regarded
as a tuple of values (d1, d2, . . . , dn). A state with a prime (s′) or an index (si)
assigns values to V ′ or Vi respectively. The set of concrete states S, concrete
transitions R and concrete initial states S0 (i.e., the state space) of a symbolic
transition system are defined in the following way.

– S = {s | s |= Inv}, i.e., S contains all possible interpretations that satisfy
the invariant.

– R = {(s, s′) |(s, s′) |= Inv ∧Tran∧Inv ′}, i.e., s′ is a successor of s if assigning
s to the non-primed variables and s′ to the primed variables of the transition
formula evaluates to true.

– S0 = {s | s |= Inv ∧ Init}, i.e., S0 is the subset of S for which the initial
formula holds.

A concrete path is a (finite, loop-free) sequence of concrete states π = (s1,
s2, . . . , sn) for which (s1, s2, . . . , sn) |= Init1 ∧

⋀
1≤i≤n Inv i ∧

⋀
1≤i<n Trani,i+1

holds. In other words, the first state is initial, all states satisfy the invariant and
successor states satisfy the transition formula. A concrete state s is reachable if
a path π = (s1, s2, . . . , sn) exists with s = sn for some n.

2.2 Model Checking

Model checking [7] is a formal verification technique to automatically determine
whether a system meets a given requirement by explicitly or implicitly analyzing
its behaviors (i.e., paths starting from initial states). Requirements are usually
given using temporal logics [7]. In our work we focus on safety properties, where
a FOL formula ϕ is given over V that must hold for every reachable state. When
the system does not meet the safety property, a path π = (s1, s2, . . . , sn) can be
found where sn ̸|= ϕn. Such paths are called counterexamples.

2.3 Interpolation

Craig interpolation is a technique from logic that can produce for two incon-
sistent formulas an interpolant, which generalizes the first formula, while still
contradicting the second one. The interpolant can be interpreted as an explana-
tion of the contradiction.

Definition 2 (Craig interpolant). Let A and B be FOL formulas such that
A∧B is unsatisfiable. The formula I is a Craig interpolant (or simply an inter-
polant) for A,B if the following properties hold [17]:

– A implies I,



– I ∧B is unsatisfiable,
– I only contains symbols common in A and B (excluding symbols of the logic).

William Craig showed that an interpolant always exists for FOL formulas A and
B with at least one symbol in common and A ∧B being unsatisfiable [9].

Interpolation can be generalized from two formulas to a sequence of formulas,
for which an interpolation sequence is calculated instead of a single interpolant.

Definition 3 (Interpolation sequence). Let A1, A2, . . . , An be a sequence of
FOL formulas such that A1∧A2∧. . .∧An is unsatisfiable. The sequence of formu-
las I0, I1, . . . , In is an interpolation sequence for A1, A2, . . . , An if the following
properties hold [19]:

– I0 = ⊤, In = ⊥,
– Ij ∧Aj+1 implies Ij+1 for 0 ≤ j < n,
– Ij only contains symbols common in A1, . . . , Aj and Aj+1, . . . , An for 0 <

j < n (excluding symbols of the logic).

3 Related Work and Contributions

Counterexample-Guided Abstraction Refinement (CEGAR) is a widely used abs-
traction-based approach to tackle the complexity of real-life software and hard-
ware systems [6]. CEGAR-based algorithms usually have the following four main
steps.

1. The first step is to create an abstract model that over-approximates the
concrete model and is easier to handle computationally.

2. The abstract model is then checked by a model checking algorithm. Due
to the behavior of over-approximation, if the abstract model satisfies the
requirement, then it also holds in the concrete model.4

3. On the other hand, if the abstract model violates the requirement, an ab-
stract counterexample is produced by the model checker. The third step is to
check the feasibility of the abstract counterexample in the concrete model.
If a concrete counterexample exists, it is a witness that the original model
also violates the requirement.

4. If the abstract counterexample is not feasible, the abstraction has to be
refined and the process has to be repeated from Step 2, until either the
requirement holds for the abstract model or a concrete counterexample is
found.

Types of Abstraction. CEGAR can work with different types of abstractions,
including predicate abstraction [13] and explicit value abstraction [8]. There has
also been work on a combination of the former two approaches for configurable
program analysis [2]. We also propose a combination of predicate abstraction
and explicit values at the initial abstraction, but instead of program analysis,
we focus on symbolic transition systems (Section 4.1).

4 This relation holds for ACTL* properties [6], including safety properties.



Refinement Strategies. Interpolation is often used to infer new predicates that
refine the abstraction. Craig interpolation yields a single predicate [4], [14], while
its extension, sequence interpolation produces a sequence of predicates [1], [11],
[16]. Our approach is similar to the one presented in [11], however in our frame-
work the initial abstraction can be defined by arbitrary predicates and explicit
variables (Section 4.4). As a special case, choosing the program counter as the
only explicit variable yields a similar approach to the one presented in [11].

Contributions. In our work we make the following novel contributions. (1) We
describe a CEGAR framework for symbolic transition systems, where refinement
is based on splitting abstract states. We show that both predicate abstraction
and explicit value abstraction can be incorporated into this framework along with
Craig and sequence interpolation-based refinement strategies. This allows us to
experiment with several algorithm configurations and their extensions. (2) As a
first result, we used this framework to develop a new configuration of CEGAR
that extends predicate abstraction with explicit values at the initial abstraction
based on domain knowledge or heuristics. (3) We also use this framework to eval-
uate different CEGAR configurations (including our extended one) on various
models, including industrial PLC codes and hardware.

In the following section, we present the CEGAR framework with our new
configuration, this way also discussing the integration of the different algorithmic
components.

4 A Configurable CEGAR Framework

This section presents the steps of our configurable CEGAR framework: initial
abstraction (Section 4.1), model checking (Section 4.2) with an incremental op-
timization (Section 4.5), counterexample concretization (Section 4.3) and ab-
straction refinement (Section 4.4).

4.1 Initial Abstraction

The algorithms are based on the existential abstraction framework of Clarke et
al. [6], predicate abstraction [13] and explicit-value abstraction [8].

Predicate Abstraction. Predicate abstraction maps concrete states to ab-
stract states based on their evaluation on a set of FOL predicates. Given a
symbolic transition system T = (V, Inv , Tran, Init) and a set of FOL predicates
P over V , there are 2|P| possible abstract states, denoted by Ŝ. An abstract
state ŝ ∈ Ŝ is a set of predicates, where for each pi ∈ P, ŝ contains either pi or
¬pi. Given an abstract state ŝ ∈ Ŝ, let its label be Label(ŝ) =

⋀
p∈ŝ p, i.e., the

conjunction of predicates (or their negations) in ŝ. A concrete state s is mapped
to ŝ if s |= Label(ŝ).

In existential abstraction the abstract transition relation R̂ and the set of
abstract initial states Ŝ0 are defined in the following way [6].



– R̂ = {(ŝ, ŝ′) ∈ Ŝ× Ŝ |∃s, s′.(s, s′) |= Inv ∧Inv ′∧Label(ŝ)∧Label(ŝ′)′∧Tran},
i.e., concrete successor states (s, s′) exist, with s mapped to ŝ and s′ to ŝ′.

– Ŝ0 = {ŝ ∈ Ŝ | ∃s. s |= Inv ∧ Init ∧ Label(ŝ)}, i.e., a concrete initial state s
exists, which is mapped to ŝ.

Example 1. Consider a symbolic transition system T with V = {x, y}, Dx =
Dy = Z, Inv = (0 ≤ x ∧ x ≤ 3 ∧ 0 ≤ y ∧ y ≤ 1), Init = (x

.
= 0 ∧ y

.
= 0) and

Tran = (x + y
.
= 0 ∧ x′ − y′

.
= 2) ∨ (x + y

.
= 1 ∧ x′ .

= 1 ∧ y′
.
= 1) ∨ (x + y

.
=

3 ∧ x′ .
= 3 ∧ y′

.
= 0). The concrete state space of T can be seen in Figure 1(a),

where circles denote concrete states (x, y), the double circle denotes the initial
state and edges denote transitions. Suppose, that P = {x < 2, y

.
= 1}, which

means that there are 2|P| = 4 abstract states. Partitioning by P is indicated by
dashed lines in Figure 1(a), while the corresponding abstract transition system
(Ŝ, R̂, Ŝ0) can be seen in Figure 1(b).

(0, 0)

(1, 0)

(1, 1)

(0, 1)

(2, 0)

(3, 0)

(2, 1)

(3, 1)

(x < 2) ¬(x < 2)

¬(y .
= 1)

(y
.
= 1)

(a) Concrete state space.

ŝ0

ŝ1

ŝ2

ŝ3

(b) Abstract state space.

Fig. 1. Predicate abstraction example.

An abstract path is a (finite, loop-free) sequence of abstract states π̂ =
(ŝ1, ŝ2, . . . , ŝn) with ŝ1 ∈ Ŝ0 and (ŝi, ŝi+1) ∈ R̂ (1 ≤ i < n). An abstract path
π̂ = (ŝ1, ŝ2, . . . , ŝn) is concretizable if a sequence of states π = (s1, s2, . . . , sn)
exists for which (s1, s2, . . . , sn) |= Init1 ∧

⋀
1≤i≤n Label(ŝi)i ∧

⋀
1≤i≤n Inv i ∧⋀

1≤i<n Trani,i+1. In other words, π is a concrete path where the ith concrete
state is mapped to the ith abstract state.

Explicit Value Abstraction. In explicit value abstraction, the variables V
of the system are divided into two disjoint sets: visible (VV ) and invisible (VI)
sets of variables. Concrete states are mapped to abstract states based on their
evaluation on visible variables. Given a symbolic transition system T = (V, Inv ,
Tran, Init) and the set of visible variables VV ⊆ V , there are

∏
vi∈VV

|Dvi |
possible abstract states, denoted by Ŝ. An abstract state ŝ ∈ Ŝ is a (many sorted)
interpretation that assigns a value ŝ(vi) = di ∈ Dvi to each visible variable
vi ∈ VV of its domain Dvi . A concrete state s is mapped to ŝ if s(vi) = ŝ(vi) for
each visible variable vi ∈ VV . The label of an abstract state ŝ in explicit value



abstraction can be defined by Label(ŝ) = ∧vi∈VV
(vi

.
= ŝ(vi)), i.e., a conjunction

of the assignments. Transitions and initial states are mapped as in predicate
abstraction.

Example 2. Recall the symbolic transition system of Example 1 and suppose,
that VV = {y}, VI = {x}. The concrete state space and the partitioning by VV

is indicated in Figure 2(a), while the corresponding abstract transition system
(Ŝ, R̂, Ŝ0) can be seen in Figure 2(b).

(0, 0)

(1, 0)

(1, 1)

(0, 1)

(2, 0)

(3, 0)

(2, 1)

(3, 1)

(y
.
= 0)

(y
.
= 1)

(a) Concrete state space.

ŝ0

ŝ1

(b) Abstract state space.

Fig. 2. Explicit value abstraction example.

Extending Predicate Abstraction with Explicit Values (Combined Ab-
straction). We observed that both abstraction types have advantages and
shortcomings. For example, a variable with an infinite domain cannot be tracked
explicitly. On the other hand, a variable appearing in different equalities (e.g.,
x

.
= 1, x

.
= 2, . . .) may yield a handful of predicates and refinement itera-

tions. In such cases it is more efficient to keep track of the variable explic-
itly. Therefore, we also developed a combined method that extends predicate
abstraction with explicit values when creating the initial abstract model. For-
mally, let T = (V, Inv ,Tran, Init) be a symbolic transition system with variables
V = {v1, v2, . . . , vn}, P be a set of FOL predicates over V and VE ⊆ V be the set
of explicit variables. Without the loss of generality, in the following it is assumed
that explicit variables are represented by the first k indices (0 ≤ k ≤ n), i.e.,
VE = {v1, v2, . . . , vk}. We combine predicate abstraction with explicit values in
the following way. An abstract state ŝ ∈ Ŝ is a set of predicates, where

– for each pi ∈ P, ŝ contains either pi or ¬pi,
– for each vi ∈ VE , ŝ contains a predicate of the form vi

.
= di, where di ∈ Dvi .

Consequently, there are |Ŝ| = 2|P| ·|Dv1 |·|Dv2 |·. . .·|Dvk | possible abstract states.
The abstract transition relation R̂ and the initial states Ŝ0 can be calculated
similarly to predicate abstraction. The initial set of predicates and explicit values
can be determined by domain knowledge or by simple heuristics (see Section 5).



Example 3. Suppose, that V = {x, y} withDx = Dy = {0, 1}, the only predicate
is P = {x < y} and the only explicit variable is VE = {x}. There are thus four
abstract states ŝ1 = {x < y, x

.
= 0}, ŝ2 = {x < y, x

.
= 1}, ŝ3 = {¬(x < y), x

.
= 0}

and ŝ4 = {¬(x < y), x
.
= 1}.

4.2 Model Checking

An abstract state ŝ ∈ Ŝ violates the safety property ϕ if Label(ŝ) ∧ Inv ∧ ¬ϕ
is satisfiable, i.e., a concrete state exists, which is mapped to ŝ but violates
ϕ. The model checking problem on the abstract transition system is to check
if an abstract state ŝ violating ϕ is reachable, i.e., whether an abstract path
ϕ̂ = (ŝ1, ŝ2, . . . , ŝn) exists with ŝn = ŝ.

Example 4. Recall Example 1 and suppose that the safety property is ϕ = (x ̸ .=
3 ∨ y ̸ .= 0), i.e., only the concrete state (3, 0) violates ϕ. Consequently, ŝ2 also
violates ϕ and the paths π̂1 = (ŝ0, ŝ3, ŝ2) and π̂2 = (ŝ0, ŝ2) are abstract coun-
terexamples.

CEGAR can work with different kinds of model checkers as long as they are ca-
pable of providing a counterexample. Our framework is currently equipped with
an incremental explicit model checker. Incrementality relies on the refinement
strategy (Section 4.4), therefore it is presented afterwards (Section 4.5).

4.3 Counterexample Concretization

An abstract counterexample π̂ = (ŝ1, ŝ2, . . . , ŝn) for the safety property ϕ is con-
cretizable if a sequence of states π = (s1, s2, . . . , sn) exists for which (s1, s2, . . . ,
sn) |= Init1∧

⋀
1≤i≤n Label(ŝi)i∧

⋀
1≤i≤n Inv i∧

⋀
1≤i<n Trani,i+1∧¬ϕn holds. In

other words, π̂ is concretizable as a path and in addition the last state violates the
safety property. A concretizable counterexample is a witness that the concrete
model also violates the requirement, while a non-concretizable counterexample
is called spurious.

In order to avoid finding the spurious counterexample again, the abstraction
has to be refined. The longest concretizable prefix of the counterexample provides
useful information for the refinement. Therefore, an abstract counterexample
π̂ = (ŝ1, ŝ2, . . . , ŝn) is concretized iteratively with the following n+ 1 formulas.

Fi =

⎧⎨⎩ Init1 ∧ Inv1 ∧ Label(ŝ1)1 if i = 1
Inv i ∧ Label(ŝi)i ∧ Trani−1,i if 1 < i ≤ n
¬ϕn if i = n+ 1

The formula F1∧F2∧ . . .∧Fn describes concrete paths mapped to π̂ (similarly to
bounded model checking [3]), while Fn+1 ensures that the last state violates the
property. If F1∧F2∧. . .∧Fn+1 is satisfiable, the counterexample is concretizable.
Otherwise, let 1 ≤ f ≤ n be the largest index for which F1 ∧ F2 ∧ . . . ∧ Ff is
satisfiable. The state ŝf is then called the failure state since a concrete path
leads there but it cannot be extended.



Example 5. Recall Example 4 with the abstract counterexamples π̂1 = (ŝ0, ŝ3,
ŝ2) and π̂2 = (ŝ0, ŝ2). It can be seen that π̂1 is spurious since ŝ2 cannot be
reached by a concrete path. The longest concretizable prefix is (ŝ0, ŝ3), hence
the failure state is ŝ3. The abstract counterexample π̂2 is concretizable as a path
with ((0, 0), (2, 0)), but (2, 0) fulfills the property, thus the failure state is ŝ2.

4.4 Abstraction Refinement

The set of concrete states mapped to the failure state ŝf are partitioned into
the following three groups: states that can be reached from an initial state are
dead-end, states having a transition to ŝf+1 or violating ϕ are bad, while other
states are irrelevant. It is clear that a state cannot be dead-end and bad at the
same time since then ŝf would not be a failure state [6].

Example 6. Recall Example 5 and Figure 1 with π̂1 = (ŝ0, ŝ3, ŝ2) and π̂2 =
(ŝ0, ŝ2). The failure state of π̂1 is ŝ3, where (3, 1) is a dead-end state and (2, 1)
is bad. The failure state of π̂2 is ŝ2, where (2, 0) is dead-end and (3, 0) is bad.

The purpose of abstraction refinement is to map dead-end and bad states to
different abstract states so that the spurious counterexample cannot occur in the
next iteration. Predicate abstraction and our combined method uses predicate
refinement to obtain new predicates, while explicit value abstraction employs
explicit value refinement to make some previously invisible variables visible.

Predicate Refinement. Our framework supports both Craig and sequence
interpolation to infer new predicates and it also utilizes lazy abstraction, i.e.,
only a subset of the abstract states is refined.

Craig Interpolation. Dead-end and bad states can be characterized with formulas
D and B respectively in the following way.

D = Init1 ∧
⋀

1≤i≤f

Inv i ∧
⋀

1≤i≤f

Label(ŝi)i ∧
⋀

1≤i<f

Trani,i+1

B =

{
Invf+1 ∧ Label(ŝf+1)f+1 ∧ Tranf,f+1 if f < n
¬ϕn if f = n

In other words, D describes paths mapped to the prefix (ŝ1, ŝ2, . . . , ŝf ), while
B describes either transitions from ŝf to ŝf+1 or states violating ϕ. It is clear
that D ∧B is unsatisfiable, otherwise a longer prefix could be found or π̂ would
be concretizable. Consequently, Craig interpolation can be applied, yielding an
interpolant I with the following properties.

– D ⇒ I, i.e., I is a generalization of dead-end states,
– I ∧B is unsatisfiable, i.e., bad states cannot satisfy I,
– I refers to common symbols of D and B, which are variables with index f .



Therefore, removing the indices from the variables in I yields a new predicate
that separates dead-end and bad states mapped to ŝf . We refine the abstraction
by replacing ŝf with ŝf1 and ŝf2 obtained by adding I and ¬I to the predicates
of ŝf , i.e., ŝf1 = ŝf ∪ {I} and ŝf2 = ŝf ∪ {¬I}. This approach, namely splitting
only a subset of states is similar to lazy abstraction [15].

Example 7. Recall Example 6 and the spurious counterexample π̂1 = (ŝ0, ŝ3, ŝ2),
where ŝ3 is the failure state. Thus, D and B are defined in the following way for
Craig interpolation.

– D = Init0 ∧ Inv0 ∧ Inv3 ∧ Label(ŝ0)0 ∧ Label(ŝ3)3 ∧ Tran0,3,
– B = Inv2 ∧ Label(ŝ2)2 ∧ Tran3,2.

The formula I = (x3
.
= 3) is an interpolant for D and B, which can be used to

split ŝ3 (Figure 3(a)). The refined abstract state space can be seen in Figure 3(b),
where the spurious behavior of π̂1 is eliminated. However, π̂2 = (ŝ0, ŝ2) is still a
spurious counterexample that needs another refinement iteration.

(0, 0)

(1, 0)

(1, 1)

(0, 1)

(2, 0)

(3, 0)

(2, 1)

(3, 1)

(x < 2) ¬(x < 2)

¬(y .
= 1)

(y
.
= 1)

¬(x .
= 3)

(x
.
= 3)

(a) Concrete state space.

ŝ0

ŝ1

ŝ2

ŝ3a ŝ3b

(b) Abstract state space.

Fig. 3. Predicate refinement example with Craig interpolation.

Sequence Interpolation. Craig interpolation can be generalized to sequence inter-
polation [11] in order to split multiple states along the spurious counterexample
π̂ = (ŝ1, ŝ2, . . . , ŝn). Formally, A1, A2, . . . , An+1 is defied in the following way.

Ai =

⎧⎨⎩ Init1 ∧ Inv1 ∧ Label(ŝ1)1 if i = 1
Inv i ∧ Label(ŝi)i ∧ Trani−1,i if 1 < i ≤ n
¬ϕn if i = n+ 1

In other words, the formula A1 describes initial states mapped to ŝ1, while
A2, A3, . . . , An describe reachable states mapped to ŝ2, ŝ3, . . . , ŝn respectively.
Finally, An+1 describes states violating the safety property. It is clear that A1 ∧
A2 ∧ . . . ∧ An+1 is unsatisfiable, since π̂ is spurious. Hence, an interpolation
sequence I0, I1, . . . In+1 exists with the following properties:



– I0 = ⊤, In+1 = ⊥, i.e., interpolants that do not correspond to any state in
the counterexample carry no information,

– Ij ∧ Aj+1 ⇒ Ij+1 for 0 ≤ j ≤ n, i.e., the interpolants together generalize
dead-end states and contradict bad states,

– Ij refers only to the common symbols of A1, . . . , Aj and Aj+1, . . . , An+1, i.e.,
variables with index j.

Abstraction is refined by replacing each ŝi (1 ≤ i ≤ n) with ŝi1 and ŝi2
obtained by adding Ii and ¬Ii to the predicates of ŝi respectively. Formally,
ŝi1 = ŝi∪{Ii} and ŝi2 = ŝi∪{¬Ii}. It may occur that Ii = ⊤ or Ii = ⊥ for some
1 ≤ i ≤ n. In this case the corresponding abstract state ŝi is not split.

The motivation behind sequence interpolation is twofold. On the one hand,
splitting multiple states in a single step can eliminate more spurious behavior,
yielding fewer refinement iterations. On the other hand, we observed that sep-
arating dead-end and bad states with a single formula (Craig interpolant) may
render the formula long and complex. Sequence interpolation in contrast, can
produce more, but less complex formulas. Furthermore, it also makes concretiza-
tion easier, since the failure state ŝf does not have to be determined.

Example 8. As an example, consider a symbolic transition system with variables
V = {x, y, z}. Suppose, that the safety property is ϕ = x ̸ .= 5, for which the
abstract counterexample π̂ = (ŝ1, ŝ2, ŝ3, ŝ4) shown in Figure 4(a) is produced by
the model checker. It can be seen that π̂ is spurious, since (5, 0, 0) cannot be
reached from (0, 0, 0). Therefore, A1, A2, . . . , A5 is defined in the following way:

– A1 = Init1 ∧ Inv1 ∧ Label(ŝ1)1,
– A2 = Inv2 ∧ Label(ŝ2)2 ∧ Tran1,2,
– A3 = Inv3 ∧ Label(ŝ3)3 ∧ Tran2,3,
– A4 = Inv4 ∧ Label(ŝ4)4 ∧ Tran3,4,
– A5 = ¬ϕ4.

It can be checked that I0 = ⊤, I1 = ⊤, I2 = (x2 < 2), I3 = (x3 < 4), I4 = ⊥,
I5 = ⊥ is an interpolation sequence for A1, A2, . . . , A5. Hence, ŝ1 and ŝ4 are
not split, ŝ2 is split with the predicate (x < 2) and ŝ3 with (x < 4) as the
dashed lines indicate. The abstract states after the refinement can be seen in
Figure 4(b). It is clear that the spurious counterexample is eliminated. It can
also be seen that both splits are required.

Suppose now, that Craig interpolation is applied for the same problem. The
failure state is ŝ2, where (1, 1, 1) is a dead-end state and all the others are bad.
Therefore, (1, 1, 1) has to be separated from the others with a single formula.
This requires all three variables (e.g., I = (x2

.
= 1 ∧ y2

.
= 1 ∧ z2

.
= 1)), since

(1, 1, 1) is not distinguishable with two or less variables. In contrast, sequence
interpolation could be solved with two predicates containing only x.

Explicit Value Refinement. As in predicate abstraction, the purpose of re-
finement is to map dead-end and bad states to different abstract states. In pure



ŝ1 ŝ2 ŝ3 ŝ4

(0, 0, 0)

(1, 0, 0)

(1, 0, 1)

(1, 1, 0)

(1, 1, 1)

(2, 0, 0)

(2, 0, 1)

(2, 1, 0)

(2, 1, 1)

(3, 0, 0)

(3, 0, 1)

(3, 1, 0)

(3, 1, 1)

(4, 0, 0)

(4, 0, 1)

(4, 1, 0)

(4, 1, 1)

(5, 0, 0)

(a) Abstract counterexample.

ŝ1

ŝ2a

ŝ2b

ŝ3a

ŝ3b

ŝ4

(b) Abstraction refinement.

Fig. 4. Predicate refinement example with sequence interpolation.

explicit value analysis this can be done by making a subset V ′
I ⊆ VI of the pre-

viously invisible variables visible, i.e., VV ← VV ∪ V ′
I and VI ← VI \ V ′

I [8]. In
contrast to predicate abstraction, visible variables are common for each state,
which means that each abstract state is split in the new iteration [8].5 In our
framework we generate V ′

I with interpolation in the following way. Recall that we
defined the label of an abstract state in explicit value abstraction as a conjunction
of assignments (Label(ŝ) = ∧vi∈VV

(vi
.
= ŝ(vi))). Thus, for a spurious counterex-

ample π̂ = (ŝ1, ŝ2, . . . , ŝn) a Craig interpolant I or an interpolation sequence
I0, I1, . . . , In+1 can be calculated in the same way as in predicate refinement.
Then V ′

I = var(I)∩VI with Craig interpolation, or V ′
I = ∪1≤i≤nvar(Ii)∩VI with

sequence interpolation. In other words, new visible variables are the invisible
variables appearing in the interpolants. Again, sequence interpolation can gen-
erate simpler formulas, keeping V ′

I (and thus, the abstract state space) smaller.
The reason for a spurious abstract counterexample is that dead-end and bad

states are mapped to the same abstract state ŝf , where ŝf assigns the same
values to visible variables VV . Interpolants distinguish dead-end states and bad
states, which means that they must contain at least one invisible variable. This
ensures that V ′

I ̸= ∅ and that the spurious counterexample is eliminated.

4.5 Incremental Model Checking

A non-incremental explicit model checker loops through each initial abstract
state and traverses the set of reachable abstract states using for example depth-
first search. If an abstract state violating the safety property is found, the actual
abstract path is returned. Our incremental model checker exploits the fact that
only a subset of the abstract states are split when using predicate refinement

5 This splitting is of course, not performed explicitly. The model checker constructs
the state space on-the-fly.



(see Section 4.4). Let ŝs denote the first state of the abstract counterexample
π̂ = (ŝ1, ŝ2, . . . , ŝn) that was split in the previous iteration, which is the failure
state ŝf using Craig interpolation or the state with the lowest index s such that
Is ̸= ⊤ and Is ̸= ⊥ using sequence interpolation.

The main idea of our incremental approach is presented in Figure 5. The path
(ŝ1, ŝ2, ŝ3, ŝ4) represents the actual abstract counterexample, where ŝ3 was the
first abstract state to be split. Each state has some successors that were already
fully explored (drawn on the left side of the state) and also some successors yet
to be explored (drawn on the right side). There can also be abstract initial states
that were already fully explored (ŝ5 in the figure) and abstract initial states that
will be explored after ŝ1 (ŝ6 in the figure). Abstract states in the gray area were
fully explored before ŝ3. Let this set be denoted by Ĝ. It is clear that ŝ3 can
only be reached from Ĝ through ŝ2. Otherwise, ŝ3 would first be reached that
way and not through ŝ2. Therefore, splitting ŝ3 does not affect states in Ĝ. If
exploration is continued with (ŝ1, ŝ2) on the stack, ŝ2 will “represent” states in
Ĝ, i.e., if some of the new abstract states could be reached from Ĝ, they will be
reached from ŝ2. Therefore, if ŝs is the first abstract state that was split (ŝ3 in
the example), abstract states explored before ŝs do not need to be re-explored
and the actual abstract path can be kept until ŝs−1.

ŝ1

ŝ2

ŝ3

ŝ4

ŝ5 ŝ6

Fig. 5. Illustration of incremental model checking.

It may seem that incremental model checking requires extra memory to store
the explored states. However, a non-incremental version also has to discover
and keep track of the same states. The only difference is that the incremental
version keeps the explored states in memory between the refinement iterations
and continues the search, while the non-incremental version always re-explores.

5 Evaluation

We developed a prototype Java implementation for the framework presented in
Section 4. We used Z3 [18] as the underlying logic solver. We compared various
configurations on industrial PLC codes (Section 5.1), on a protocol with infinite
state space (Section 5.2) and on hardware models (Section 5.3).



5.1 Industrial PLC Codes

Programmable Logic Controller (PLC) codes can be represented by an automa-
ton-based model [12], which can then be translated into a symbolic transition
system. Table 1 contains results for the following six configurations, correspond-
ing to the main columns: (1) predicate abstraction with Craig interpolation, (2)
predicate abstraction with sequence interpolation, (3) combined abstraction with
Craig interpolation, (4) combined abstraction with sequence interpolation, (5)
explicit value abstraction with Craig interpolation, (6) explicit value abstraction
with sequence interpolation.

In predicate abstraction the initial set of predicates is empty, while in explicit
value abstraction the initial visible variables are those appearing in the safety
property. We observed that the program location variable appears in many equal-
ity formulas, e.g., loc

.
= 0, loc

.
= 1, . . . , loc

.
= n. With this extra knowledge, we

configured the combined approach to track the location variable explicitly and
to start with an empty set of initial predicates. Note, that this idea can be gen-
eralized to any automaton-based model or such variables can also be detected
by a heuristic that analyzes the formulas.

The sub-columns T, #R and #S represent the run time in seconds, the
number of refinements and the sum of explored abstract states in each iteration
respectively. The X or × sign before the name of the model indicates whether it
meets the property or not. The columns V and L denote the number of variables
and locations in the automaton-based model respectively. The shortest run time
is indicated by bold font for each model.

It can be seen that explicit value abstraction has the best performance for
many models. However, predicate abstraction has shorter run time for models
PLC01 and PLC02 (where no reductions were applied to the automata) and the
combined approach performs best for models with the largest state space (PLC06
and PLC08). It can also be observed that the combined approach gives a better
performance for most of the models compared to pure predicate abstraction.
Furthermore, it can be seen that Craig interpolation yields many small steps
(many iterations), in contrast to sequence interpolation, which performs fewer,
but bigger steps.

5.2 Fischer’s Protocol

Fischer’s protocol [10] is a mutual exclusion algorithm for arbitrarily many com-
ponents (column #C). The model contains clock variables (with domain Q),
rendering the state space infinite. Explicit value abstraction fails to verify these
models because the clock variables become visible after a few iterations. Table 2
contains results for predicate and combined abstraction. The algorithms start
with an empty set of initial states and the combined approach tracks the vari-
ables corresponding to the locks explicitly. It can be seen that Craig interpolation
outperforms sequence interpolation for these models. It can also be observed that
the combined method is more efficient when the model meets the property.



Table 1. Measurement results for PLC codes.

Pred. (Cr.) Pred. (seq.) Comb. (Cr.) Comb. (seq.)

Model V L T (s) #R #S T (s) #R #S T (s) #R #S T (s) #R #S

× PLC01 66 36 22.5 33 100 50.2 34 191 42.0 20 452 48.5 1 81
× PLC02 66 36 22.7 33 100 49.4 34 191 41.0 20 452 47.3 1 81
X PLC03 29 17 479.2 195 6694 99.2 23 292 28.2 34 629 51.8 6 212
X PLC04 29 17 40.2 64 1076 14.4 16 82 17.6 21 353 6.1 2 47
× PLC04 29 17 44.0 65 1069 406.7 31 1198 34.3 35 650 36.1 5 192
X PLC05 29 17 42.2 63 1130 21.4 17 98 17.4 21 352 6.3 2 47
X PLC06 82 43 1512.8 159 4812 − − − 333.1 52 1369 227.5 2 120
X PLC07 82 43 190.8 58 552 462.2 66 1057 164.8 26 657 164.8 1 70
× PLC08 82 43 86.1 37 111 − − − 46.7 0 43 46.2 0 43
X PLC09 23 14 87.4 90 1716 94.6 32 633 61.3 94 1845 35.7 11 193

Expl. (Cr.) Expl. (Seq.)

Model V L T (s) #R #S T (s) #R #S

× PLC01 66 36 36.4 7 1640 211.8 3 758
× PLC02 66 36 32.2 7 1697 428.5 5 1439
X PLC03 29 17 5.2 1 339 9.9 1 369
X PLC04 29 17 3.3 1 165 3.8 1 165
× PLC04 29 17 7.6 2 274 38.0 1 209
X PLC05 29 17 3.5 1 167 4.7 1 167
X PLC06 82 43 1254.5 3 20956 − − −
X PLC07 82 43 78.1 2 1163 50.9 1 518
× PLC08 82 43 65.1 2 628 123.0 3 541
X PLC09 23 14 11.8 5 1261 14.5 4 833

Table 2. Measurement results for Fischer’s protocol.

Pred. (Cr.) Pred. (seq.) Comb. (Cr.) Comb. (seq.)

Model #C T (s) #R #S T (s) #R #S T (s) #R #S T (s) #R #S

X fischer 2 1.2 17 69 3.0 15 107 0.8 18 66 1.2 14 78
× fischer 2 0.6 11 41 1.1 9 45 0.8 18 62 1.2 12 58
X fischer 3 12.1 97 998 68.1 101 1584 10.3 93 1329 45.8 99 1334
× fischer 3 1.4 19 70 1.5 9 44 1.7 28 121 2.9 21 105

5.3 Hardware Models

We also evaluated the algorithms for some of the smaller models of the Hardware
Model Checking Competition [5]. Table 3 contains results for predicate abstrac-
tion and explicit value abstraction. We did not evaluate the combined approach,
since all variables are boolean type, hence it is identical to add a predicate for
a variable or to track it explicitly. Predicate abstraction starts with an empty
set of initial predicates and only the single output variable is visible using ex-
plicit value abstraction. The columns I, L and A correspond to the number of
inputs, latches and and-gates respectively. It can be seen that predicate abstrac-
tion performs better with Craig interpolation, but explicit value abstraction is
more efficient using sequence interpolation.

5.4 Summary

Measurements show that all configurations have advantages and shortcomings
depending on the types of the models. Predicate abstraction with Craig interpo-



Table 3. Measurement results for hardware models.

Pred. (Cr.) Pred. (seq.) Expl. (Cr.) Expl. (Seq.)

Model I L A T (s) #R #S T (s) #R #S T (s) #R #S T (s) #R #S

X mutexp0 11 20 159 10.3 63 494 24.5 43 420 14.3 8 742 22.7 7 806
X mutexp0neg 11 20 159 6.1 44 284 3.7 12 82 8.8 9 441 6.7 6 330
× nusmv.syncarb5p2.B 5 10 52 1.3 30 139 3.1 14 132 0.7 6 113 0.2 2 18
× nusmv.syncarb10p2.B 10 20 157 31.6 110 779 117.9 56 1491 239.8 11 5179 1.6 2 32
× pdtpmsarbiter 3 46 209 0.5 6 22 4.6 6 22 5.3 15 130 7.8 13 108
X ringp0 15 25 145 16.4 55 300 25.6 19 127 16.1 10 763 14.5 7 657
X ringp0neg 15 25 145 7.8 21 83 35.7 31 237 187.5 11 4870 108.2 7 2629
X srg5ptimonegnv 30 47 304 0.3 3 9 0.5 4 15 1.7 4 40 1.3 3 36

lation performs well for software and hardware models, explicit value abstraction
is efficient for PLC models, while the combined method with sequence interpola-
tion was able to handle the largest state spaces. It can also be observed that ex-
tending predicate abstraction with explicit values (the combined method) boosts
its performance. As our implementation is only a prototype without optimiza-
tions, the developed model checker can not compete with state-of-the-art tools
now. Furthermore our current goal was to compare the configurations in the
same framework, so also the formerly existing algorithms were reimplemented.

6 Conclusions

In our paper we examined various CEGAR-based algorithms for the verification
of symbolic transition systems. From the theoretical point of view, we described
a configurable framework, which can incorporate the different types of abstrac-
tions and refinement strategies. We also proposed a combination of predicate
abstraction and explicit values at the initial abstraction, being able to provide
better performance based on domain knowledge or heuristics. On the practical
side, we examined the efficiency of different configurations of the algorithms on
various models, including software and hardware and identified their advantages
and shortcomings. Our future plan is to improve our prototype implementation,
experiment with further algorithms and develop heuristics for automatically se-
lecting the most efficient configuration based on the model.
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