34 research outputs found
Differential Effect of TLR2 and TLR4 on the Immune Response after Immunization with a Vaccine against Neisseria meningitidis or Bordetella pertussis
Neisseria meningitidis and Bordetella pertussis are Gram-negative bacterial pathogens that can cause serious diseases in humans. N. meningitidis outer membrane vesicle (OMV) vaccines and whole cell pertussis vaccines have been successfully used in humans to control infections with these pathogens. The mechanisms behind their effectiveness are poorly defined. Here we investigated the role of Toll-like receptor (TLR) 2 and TLR4 in the induction of immune responses in mice after immunization with these vaccines. Innate and adaptive immune responses were compared between wild type mice and mice deficient in TLR2, TLR4, or TRIF. TRIF-deficient and TLR4-deficient mice showed impaired immunity after immunization. In contrast, immune responses were not lower in TLR2â/â mice but tended even to be higher after immunization. Together our data demonstrate that TLR4 activation contributes to the immunogenicity of the N. meningitidis OMV vaccine and the whole cell pertussis vaccine, but that TLR2 activation is not required
The transiting exoplanet community early release science program for JWST
The James Webb Space Telescope (JWST) presents the opportunity to transform
our understanding of planets and the origins of life by revealing the
atmospheric compositions, structures, and dynamics of transiting exoplanets in
unprecedented detail. However, the high-precision, time-series observations
required for such investigations have unique technical challenges, and prior
experience with other facilities indicates that there will be a steep learning
curve when JWST becomes operational. In this paper we describe the science
objectives and detailed plans of the Transiting Exoplanet Community Early
Release Science (ERS) Program, which is a recently approved program for JWST
observations early in Cycle 1. The goal of this project, for which the obtained
data will have no exclusive access period, is to accelerate the acquisition and
diffusion of technical expertise for transiting exoplanet observations with
JWST, while also providing a compelling set of representative datasets that
will enable immediate scientific breakthroughs. The Transiting Exoplanet
Community ERS Program will exercise the time-series modes of all four JWST
instruments that have been identified as the consensus highest priorities,
observe the full suite of transiting planet characterization geometries
(transits, eclipses, and phase curves), and target planets with host stars that
span an illustrative range of brightnesses. The observations in this program
were defined through an inclusive and transparent process that had
participation from JWST instrument experts and international leaders in
transiting exoplanet studies. Community engagement in the project will be
centered on a two-phase Data Challenge that culminates with the delivery of
planetary spectra, time-series instrument performance reports, and open-source
data analysis toolkits in time to inform the agenda for Cycle 2 of the JWST
mission
The changing carbon cycle of the coastal ocean
The carbon cycle of the coastal ocean is a dynamic component of the global carbon budget. But the diverse sources and sinks of carbon and their complex interactions in these waters remain poorly understood. Here we discuss the sources, exchanges and fates of carbon in the coastal ocean and how anthropogenic activities have altered the carbon cycle. Recent evidence suggests that the coastal ocean may have become a net sink for atmospheric carbon dioxide during post-industrial times. Continued human pressures in coastal zones will probably have an important impact on the future evolution of the coastal ocean's carbon budget
Recommended from our members