2,917 research outputs found

    Benzobisoxazole cruciforms: a tunable, cross-conjugated platform for the generation of deep blue OLED materials

    Get PDF
    Four new cross-conjugated small molecules based on a central benzo[1,2-d:4,5-dâ€Č]bisoxazole moiety possessing semi-independently tunable HOMO and LUMO levels were synthesized and the properties of these materials were evaluated experimentally and theoretically. The molecules were thermally stable with 5% weight loss occurring well above 350 °C. The cruciforms all exhibited blue emission in solution ranging from 433–450 nm. Host–guest OLEDs fabricated from various concentrations of these materials using the small molecule host 4,4â€Č-bis(9-carbazolyl)-biphenyl (CBP) exhibited deep blue-emission with Commission Internationale de L'Eclairage (CIE) coordinates of (0.15 ≀ x ≀ 0.17, 0.05 ≀ y ≀ 0.11), and maximum luminance efficiencies as high as ∌2 cd A−1. These results demonstrate the potential of benzobisoxazole cruciforms as emitters for developing high-performance deep blue OLEDs.We would like to thank Dr Sarah Cady, Dr Kamel Harrata and Mr Steven Veysey of Iowa State University (ISU) Chemical Instrumentation Facility for compound analysis. We thank Eeshita Manna for technical assistance. We also thank the National Science Foundation (CHE-1413173) for financial support of this work. RK and JS were partially supported by Basic Energy Sciences, Division of Materials Science and Engineering, USDOE. Ames Laboratory is operated by Iowa State University for the US Department of Energy (USDOE) under Contract No. DE-AC 02-07CH11358. Computational resources were provided in part by the MERCURY consortium (http://mercuryconsortium.org/) under NSF grants CHE-0116435, CHE-0521063, CHE-0849677, and CHE-1229354. (CHE-1413173 - National Science Foundation; Basic Energy Sciences, Division of Materials Science and Engineering, USDOE; DE-AC 02-07CH11358 - Iowa State University for the US Department of Energy (USDOE); CHE-0116435 - MERCURY consortium under NSF; CHE-0521063 - MERCURY consortium under NSF; CHE-0849677 - MERCURY consortium under NSF; CHE-1229354 - MERCURY consortium under NSF)http://pubs.rsc.org/en/Content/ArticleLanding/2016/TC/C5TC03622D#!divAbstractPublished versio

    Issues and Ramifications in Quantized Fractal Space Time: An Interface with Quantum Superstrings

    Get PDF
    Recently a stochastic underpinning for space time has been considered, what may be called Quantized Fractal Space Time. This leads us to a number of very interesting consequences which are testable, and also provides a rationale for several otherwise inexplicable features in Particle Physics and Cosmology. These matters are investigated in the present paper.Comment: 27 pages, TeX, This is from the forthcoming book The Chaotic Univers

    Effects of Rotation on the Minimum Mass of Primordial Progenitors of Pair Instability Supernovae

    Get PDF
    The issue of which stars may reach the conditions of electron/positron pair formation instability is of importance to understand the final evolution both of the first stars and of contemporary stars. The criterion to enter the pair instability regime in density and temperature is basically controlled by the mass of the oxygen core. The main sequence masses that produce a given oxygen core mass are, in turn, dependent on metallicity, mass loss, and convective and rotationally-induced mixing. We examine the evolution of massive stars to determine the minimum main sequence mass that can encounter pair-instability effects, either a pulsational pair instability (PPISN) or a full-fledged pair-instability supernova (PISN). We concentrate on zero-metallicity stars with no mass loss subject to the Schwarzschild criterion for convective instability, but also explore solar metallicity and mass loss and the Ledoux criterion. As expected, for sufficiently strong rotationally-induced mixing, the minimum main sequence mass is encountered for conditions that induce effectively homogeneous evolution such that the original mass is converted almost entirely to helium and then to oxygen. For this case, we find that the minimum main sequence mass is ~40 Msun to encounter PPISN and ~65 Msun to encounter a PISN. When mass-loss is taken into account those mass limits become ~50 Msun for PPISN and ~80 Msun for PISN progenitors. The implications of these results for the first stars and for contemporary supernovae is discussed.Comment: 23 pages, 8 figure

    Quantum phase properties of two-mode Jaynes-Cummings model for Schr\"odinger-cat states: interference and entanglement

    Full text link
    In this paper we investigate the quantum phase properties for the coherent superposition states (Schr\"odinger-cat states) for two-mode multiphoton Jaynes-Cummings model in the framework of the Pegg-Barnett formalism. We also demonstrate the behavior of the Wigner (WW) function at the phase space origin. We obtain many interesting results such as there is a clear relationship between the revival-collapse phenomenon occurring in the atomic inversion (as well as in the evolution of the WW function) and the behavior of the phase distribution of both the single-mode and two-mode cases. Furthermore, we find that the phase variances of the single-mode case can exhibit revival-collapse phenomenon about the long-time behavior. We show that such behavior occurs for interaction time several times smaller than that of the single-mode Jaynes-Cummings model.Comment: 23, 8 figure

    Star formation histories of dwarf galaxies in the FIRE simulations: dependence on mass and Local Group environment

    Get PDF
    We study star formation histories (SFHs) of ≃500\simeq500 dwarf galaxies (stellar mass M∗=105−109 M⊙M_\ast = 10^5 - 10^9\,M_\odot) from FIRE-2 cosmological zoom-in simulations. We compare dwarfs around individual Milky Way (MW)-mass galaxies, dwarfs in Local Group (LG)-like environments, and true field (i.e. isolated) dwarf galaxies. We reproduce observed trends wherein higher-mass dwarfs quench later (if at all), regardless of environment. We also identify differences between the environments, both in terms of "satellite vs. central" and "LG vs. individual MWvs. isolated dwarf central." Around the individual MW-mass hosts, we recover the result expected from environmental quenching: central galaxies in the "near field" have more extended SFHs than their satellite counterparts, with the former more closely resemble isolated ("true field") dwarfs (though near-field centrals are still somewhat earlier forming). However, this difference is muted in the LG-like environments, where both near-field centrals and satellites have similar SFHs, which resemble satellites of single MW-mass hosts. This distinction is strongest for M∗=106−107 M⊙M_\ast = 10^6 - 10^7\,M_\odot but exists at other masses. Our results suggest that the paired halo nature of the LG may regulate star formation in dwarf galaxies even beyond the virial radii of the MW and Andromeda. Caution is needed when comparing zoom-in simulations targeting isolated dwarf galaxies against observed dwarf galaxies in the LG.Comment: Main text: 11 pages, 8 figures; appendices: 4 pages, 4 figures. Submitted to MNRAS; comments welcom

    A review of size and geometrical factors influencing resonant frequencies in metamaterials

    Get PDF
    Although metamaterials and so-called left-handed media have originated from theoretical considerations, it is only by their practical fabrication and the measurement of their properties that they have gained credibility and can fulfil the potential of their predicted properties. In this review we consider some of the more generally applicable fabrication methods and changes in geometry as they have progressed, exhibiting resonant frequencies ranging from radio waves to the visible optical region

    The Role of Electron Captures in Chandrasekhar Mass Models for Type Ia Supernovae

    Full text link
    The Chandrasekhar mass model for Type Ia Supernovae (SNe Ia) has received increasing support from recent comparisons of observations with light curve predictions and modeling of synthetic spectra. It explains SN Ia events via thermonuclear explosions of accreting white dwarfs in binary stellar systems, being caused by central carbon ignition when the white dwarf approaches the Chandrasekhar mass. As the electron gas in white dwarfs is degenerate, characterized by high Fermi energies for the high density regions in the center, electron capture on intermediate mass and Fe-group nuclei plays an important role in explosive burning. Electron capture affects the central electron fraction Y_e, which determines the composition of the ejecta from such explosions. Up to the present, astrophysical tabulations based on shell model matrix elements were only available for light nuclei in the sd-shell. Recently new Shell Model Monte Carlo (SMMC) and large-scale shell model diagonalization calculations have also been performed for pf-shell nuclei. These lead in general to a reduction of electron capture rates in comparison with previous, more phenomenological, approaches. Making use of these new shell model based rates, we present the first results for the composition of Fe-group nuclei produced in the central regions of SNe Ia and possible changes in the constraints on model parameters like ignition densities and burning front speeds.Comment: 26 pages, 8 figures, submitted to Ap

    Meat tenderness: advances in biology, biochemistry, molecular mechanisms and new technologies

    Get PDF
    Meat tenderness is an important quality trait critical to consumer acceptance, and determines satisfaction, repeat purchase and willingness-to-pay premium prices. Recent advances in tenderness research from a variety of perspectives are presented. Our understanding of molecular factors influencing tenderization are discussed in relation to glycolysis, calcium release, protease activation, apoptosis and heat shock proteins, the use of proteomic analysis for monitoring changes, proteomic biomarkers and oxidative/nitrosative stress. Each of these structural, metabolic and molecular determinants of meat tenderness are then discussed in greater detail in relation to animal variation, postmortem influences, and changes during cooking, with a focus on recent advances. Innovations in postmortem technologies and enzymes for meat tenderization are discussed including their potential commercial application. Continued success of the meat industry relies on ongoing advances in our understanding, and in industry innovation. The recent advances in fundamental and applied research on meat tenderness in relation to the various sectors of the supply chain will enable such innovation
    • 

    corecore