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A B S T R A C T   

Meat tenderness is an important quality trait critical to consumer acceptance, and determines satisfaction, repeat 
purchase and willingness-to-pay premium prices. Recent advances in tenderness research from a variety of 
perspectives are presented. Our understanding of molecular factors influencing tenderization are discussed in 
relation to glycolysis, calcium release, protease activation, apoptosis and heat shock proteins, the use of prote-
omic analysis for monitoring changes, proteomic biomarkers and oxidative/nitrosative stress. Each of these 
structural, metabolic and molecular determinants of meat tenderness are then discussed in greater detail in 
relation to animal variation, postmortem influences, and changes during cooking, with a focus on recent ad-
vances. Innovations in postmortem technologies and enzymes for meat tenderization are discussed including 
their potential commercial application. Continued success of the meat industry relies on ongoing advances in our 
understanding, and in industry innovation. The recent advances in fundamental and applied research on meat 
tenderness in relation to the various sectors of the supply chain will enable such innovation.   

1. Introduction 

Tenderness is an important quality trait which determines satisfac-
tion, repeat purchase and willingness-to-pay premium prices. Histori-
cally, over the 1920-1960’s, the effects of genetics, biochemistry and 
production factors on meat tenderness were identified utilizing physical, 
chemical, histological and sensory methods. These experiments, along 
with the research conducted in the 1970’s formed the basis of much of 
our understanding of meat tenderness (see review in Warner et al., 
2021), and the data remain valid today. This research over the last 70 
years has been pivotal in understanding the mechanisms determining 
meat texture and tenderness, as well as for industry advances in quality 
assurance. Recent advances and understanding of mechanisms, 

including biology, biochemistry and bio-physics of meat in relation to 
tenderness, have occurred throughout the meat supply chain. 

The major determinants of meat tenderness are; connective tissue 
and cross-links, myofibrillar integrity, sarcomere length, protein dena-
turation and intramuscular fat. Our understanding of molecular factors 
influencing tenderization has advanced and this is reviewed here in 
relation to glycolysis, calcium release, protease activation, apoptosis 
and heat shock proteins, the use of proteomic analysis for monitoring 
changes, proteomic biomarkers and oxidation/nitrosative stress. Each of 
these structural, metabolic and molecular determinants of meat 
tenderness are then discussed in greater detail in relation to animal 
variation, and changes during postmortem ageing and cooking, with a 
focus on recent advances. Finally, recent innovations in postmortem 
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technologies and enzymes for meat tenderization are discussed 
including their potential commercial application. 

Methods to measure tenderness can include the conduct of sensory 
panels, consumer panels, or through instrumental measures such as 
hardness, derived from Texture Profile Analysis or much more 
commonly, shear force, a measure of the force required to shear through 
a meat sample. Shear force is described in the literature either simply as 
shear force, peak shear force or Warner-Bratzler shear force (WBSF) and 
for a discussion of the definition and use of these terms as well as their 
relation to sensory measures the reader is referred to Warner et al. 
(2021). WBSF and other variations of shear force are the most often 
reported values to measure tenderness and thus are used throughout this 
review, as significantly less studies included sensory or consumer panel 
data. 

This review examines meat tenderness across species and through 
the supply chain from a variety of perspectives. These perspectives 
include biology, molecular, biochemistry, industry and technological, 
allowing the sometimes divergent viewpoints to be examined more 
closely and hopefully enabling convergence and innovation. 

2. Advances in molecular understanding of factors influencing 
tenderization 

The general viewpoint that myofibrillar protein degradation by 
endogenous proteases plays an important role in meat tenderization has 
long been accepted (Davey & Gilbert, 1969). The nature of meat 
tenderization is the development of proteolysis of myofibrillar proteins 
by multi-enzyme systems during the conversion of muscle to meat and 
subsequent aging time. The biochemical and metabolic processes 
involved in this muscle-to-meat conversion are extremely intricate due 
to the complex interactions across different pathways during postmor-
tem aging. In recent decades, the developing biochemical approaches 
and proteomics techniques have been applied to unravel the cellular and 
molecular mechanisms behind the variation in meat quality attributes. 
The primary outcome has been the identification of differential protein 
expression and modification across phenotypes with variable meat 
quality attributes, highlighting the importance of finding potential 
biomarkers to predict meat tenderness. Based on protein functions and 
the involved metabolic pathways, the biomarkers can be categorized 
into metabolic enzymes, structural proteins, oxidative stress-related 
proteins, heat shock proteins, proteases, apoptotic and signaling pro-
teins. These proteins are key participants in the critical biochemical 
events including glycolysis and energy metabolism, calcium release, 
apoptosis, proteolysis and involvement of oxidative and nitrosative 
stress in postmortem muscle metabolism. 

2.1. Glycolysis and energy metabolism 

In postmortem muscle, the anoxic state of the muscle cell prevents 
the production of a large amount of ATP by the citric acid cycle and 
oxidative phosphorylation. The shuttle between creatine/phosphocrea-
tine and glycolysis occurs and gradually glycolysis dominates in ATP 
generation, resulting in lactate accumulation and pH decline. The ulti-
mate pH and the pH decline rate are indicators of metabolic potential 
and can influence the development of meat tenderness. Lomiwes, Far-
ouk, Wu, and Young (2014) provided convincing evidence that beef 
tenderization was compartmentalized by ultimate pH, owing to the 
variable degradation rate of myofibrillar proteins by the regulatory 
protease activity of Calpain-1 (μ-calpain) and potentially cathepsin B. 
The extent of pH decline and the ultimate pH are influenced by the 
glycolytic potential, which depends on functioning glycolytic enzymes 
catalyzing glycogen to lactate and an excess of muscle glycogen at 
slaughter. Recently, the role of mitochondrial and aerobic metabolism, 
adenosine monophosphate (AMP) kinase and other pathways in deter-
mining rate and extent of pH fall has been researched and comprehen-
sive reviews are available (Apaoblaza et al., 2020; Chauhan & England, 

2018; England et al., 2016, 2018). Positive relationships have been re-
ported between meat tenderness and the abundance of glycolytic en-
zymes, including phosphoglucomutase, glyceraldehyde 3-phosphate 
dehydrogenase, triose-phosphate isomerase, enolase, pyruvate kinase 
and lactate dehydrogenase (Picard & Gagaoua, 2017). Succinate dehy-
drogenase and succinyl Co-A synthase, belonging to the tri-carboxylic 
acid (TCA) cycle, were reported to be more expressed in tender meat 
(Ouali et al., 2013). It should be noted that the use of glycolytic proteins 
as potential biomarkers to predict meat tenderness outcomes will be 
different between species and muscle types (Picard & Gagaoua, 2017, 
2020). 

2.2. Calcium release 

Consumption of ATP in the muscle cell allows relaxation in the 
actomyosin bond and is involved in the sequestration of Ca2+ and ion 
gradients (Geeves & Holmes, 2005). As postmortem muscle cells 
encounter less energy and more acidic conditions, this can lead to the 
dysfunction of sarcoplasmic reticulum (SR), causing Ca2+ to leak into 
the sarcoplasm (Bing et al., 2016; Küchenmeister, Kuhn, & Ender, 2000; 
Kuchenmeister, Kuhn, & Stabenow, 2002). Decreased ATP levels com-
bined with elevated cytoplasmic calcium initially results in the forma-
tion of the permanent cross-bridge, also called the actomyosin bond. On 
the other hand, calcium is an important messenger in many cell 
signaling pathways. Calcium is involved in calpain system activation, 
and also in the initiation of apoptosis, leading to proteolysis and meat 
tenderization. The components of Ca2+ channels located in the mem-
brane of sarcoplasmic reticulum are lined with the membrane proteins 
sarco-endoplasmic reticulum calcium-ATPase 1, ryanodine receptor and 
inositol 1, 4, 5-trisphosphate receptor, which are suggested to be 
involved in meat tenderization. Kim et al. (2008) reported that more 
expression of inositol 1,4,5-trisphosphate receptor was detected in a 
tough meat group (Warner-Bratzler shear force, WBSF, 79±5.9 N) with a 
high Ca2+ level in beef longissimus dorsi compared to a tender meat group 
(WBSF, 36±2.9 N). Dysregulation and different expressions of Ca2+

channel proteins were reported in pale, soft, exudative (PSE, a quality 
defect) meat in pork (Guo et al., 2016; Wang et al., 2019) and PSE-like 
meat in broiler (Xing et al., 2017), relative to non-PSE normal meat. 
Recently, Dang et al. (2020) reported that the incubation of 
DS16570511, a cell-permeable inhibitor of the mitochondrial calcium 
uniporter, into bovine longissimus thoracis et lumborum within 20 min of 
exsanguination significantly increased the sarcoplasmic calcium con-
centration at 24 h and subsequently enhanced Calpain-1 autolysis, cal-
pastatin degradation, myofibrillar protein proteolysis, and meat 
tenderness over a 14 d aging period. Collectively, it is suggested that 
sarcoplasmic calcium levels can be collectively modulated by mito-
chondria and sarcoplasmic reticulum and exhibit a crucial role in the 
development of meat tenderness during postmortem aging. 

2.3. Protease activation and proteolysis 

Accumulated evidence supports the predominant role of Calpain-1 in 
the proteolysis of myofibrillar proteins as the major contribution to meat 
tenderization (Camou, Marchello, Thompson, Mares, & Goll, 2007; 
Geesink, & A.H., & Koohmaraie, M., 2006; Koohmaraie, 1992) . The 
Calpain-2 (m-calpain), another member of calpain family, was thought 
to be inactive postmortem, due to insufficient calcium concentration in 
muscle and acidic conditions in post-rigor muscle (Maddock, Huff- 
Lonergan, Rowe, & Lonergan, 2005). However, Colle and Doumit 
(2017) found that Calpain-2 was responsible for the improvement of 
beef tenderness after 14 d of aging while Calpain-1 was mainly active in 
the first 14 d. The activity of Calpain-2 was shown to increase early 
postmortem by the injection of calcium chloride, or freezing (Wheeler, 
Koohmaraie, & Shackelford, 1997). The underlying mechanism through 
which calcium chloride improves meat tenderness is via modulation of 
calpain and calpastatin activities. Calcium chloride injection/infusion is 
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particularly beneficial for meat from tougher muscles or breeds, e.g. Bos 
indicus. For further information on the role of calcium on the activation 
and inactivation of calpains and calpastatin, refer to a comprehensive 
review by Nowak (2011). Proteolysis during the meat tenderization 
process may be the synergistic effects of multi-enzymes including cal-
pains, cathepsins, and caspases, but the predominant role of calpains 
(Uytterhaegen, Claeys, & Demeyer, 1994) remains unchallenged in the 
literature. In particular, lysosome cathepsins are a large family of exo- 
and endo-peptidases and would be activated at low pH conditions which 
are favored by postmortem muscle cell with ultimate pH of 5.3-5.7. 
Zhang et al. (2019) found that cathepsin B and D released from desta-
bilized lysosomal membrane in postmortem bovine longissimus activated 
the pro-apoptotic proteins Bid and Bax in the mitochondria. The mito-
chondrial membrane permeability was triggered by activated Bid and 
Bax and further induced caspase-9 and caspase-3 activation, leading to 
apoptosis and contributing to meat tenderness. 

Extensive degradation of myofibrillar and cytoskeletal proteins, 
including troponin-T, tropomyosin, desmin, titin and nebulin, can occur 
while minor changes in actin, myosin and CapZ have been reported 
during postmortem aging (Lana & Zolla, 2016). Gradual degradation of 
myofibrillar proteins can cause the breakdown of the Z-line, thus 
weakening the longitudinal structure of the myofibrillar sarcomere 
(Huff-Lonergan et al., 2010). Recently, plectin, a scaffold protein 
traversing the periphery of Z-discs, costameres, mitochondria and nu-
clear membranes, was found to be gradually degraded in pork long-
issimus thoracis during 7 d of postmortem aging, predominantly by 
Calpain- 1 (Tian et al., 2019). 

Protein phosphorylation has been reported to be involved in calpain 
activation and degradation of myofibrillar and cytoskeletal proteins. Li 
et al. (2017) found that in vitro phosphorylation of ovine myofibrillar 
proteins, especially desmin and troponin T, by protein kinase A pre-
vented their degradation by Calpain-1. In addition, both phosphoryla-
tion of Calpain-1 by protein kinase A and dephosphorylation by alkaline 
phosphatase promoted the catalytic activity of Calpain-1 (Du et al., 
2018; Du et al., 2019). It was also found that phosphorylated Calpain-1 
was more sensitive to inhibition by calpastatin. 

The basic components and mechanisms of tenderization postmortem 
are similar in poultry in comparison with mammalian muscle, such as 
the roles of actin-myosin interaction and Calpain-1 and -2 induced 
degradation of cytoskeletal proteins (Tomaszewska-Gras et al., 2011; 
Zhao et al., 2017). Dransfield (1994b) showed that 80% of maximum 
tenderness could be reached only 0.3 h after slaughter in chicken while 
4.2, 7.7, 9.5, and 10 d were needed in pig, sheep, rabbit, and cattle 
muscles, respectively, suggesting a much more rapid tenderization 
process in chicken compared to other species such as beef, pork and 
mutton. This has been attributed to the greater calcium sensitivity and 
the activation of the calpain system (Lee et al., 2008). In addition, the 
thinness of the perimysium and endomysium, relative to mammalian 
muscle, is also thought to be a contributor to the high levels of tender-
ness in poultry muscle (An et al., 2010), likely partially associated with 
the young age at which poultry are slaughtered. 

2.4. Apoptosis and heat shock proteins (HSPs) 

Apoptosis in the postmortem cell is generally acknowledged to occur, 
based on the occurrence of typical characteristics including cell 
shrinkage, phosphatidylserine externalization and mitochondria alter-
ation (Becila et al., 2017; Ouali et al., 2013). One of the representative 
pathways to induce apoptosis is the release of cytochrome C from 
mitochondria, promoted by the calcium-activated Bax in turn activating 
the caspases (Wang et al., 2018). The most profound effect of apoptosis 
on the muscle cell is the mediation of proteolysis executed by caspases 
(Kemp & Parr, 2012). Regulation of caspase activity has been shown to 
affect the degradation of myofibrils (Chen et al., 2011; Huang et al., 
2014). Caspase-3 activity was reported to be negatively correlated with 
WBSF (r = –0.49 at 24 h of postmortem aging; r = –0.61 at 48 h of 

postmortem aging) in bull longissimus, and the authors speculated that 
caspase-3 was associated with advanced proteolysis (Cao et al., 2013; 
Zhang et al., 2013). A putative mechanism for the participation of cas-
pases in proteolysis is the interaction with the calpain system, in 
particular the calpain endogenous inhibitor calpastatin, which is a 
substrate of caspases (Kemp & Parr, 2012). The interaction between 
caspases and the calpain system seems to be multifaceted and complex 
in postmortem muscle, hence warranting further research. 

Heat shock proteins (HSPs) are synthesized in response to cell stress, 
acting as protectors, chaperones and restorers of cellular homeostasis. 
According to their monomeric molecular size, HSPs can be categorized 
into five conserved classes, including HSP60, HSP70, HSP90 and 
HSP100 as well as the small HSPs (12-43 kDa, e.g., HSP27, HSP20 and 
αβ-crystallin) (Gusev, Bogatcheva, & Marston, 2002). The initial role of 
HSPs is to activate an anti-apoptotic process in muscle cells, possibly by 
the following pathways; i) formation of a complex with active caspases 
to block their activity and function, ii) binding with substrates of effector 
caspases to delay or inhibit proteolysis and iii) restoration of damaged 
proteins to restrain the initiation of apoptosis (Lomiwes, Farouk, 
Wiklund, & Young, 2014). Heat shock proteins are reported to be bio-
markers for the prediction of meat tenderness across a wide range of 
proteomic studies (see reviews in Ouali et al., 2013; Picard & Gagaoua, 
2017). An in vitro myofibrillar protein digestion model conducted by 
Ding et al. (2018) showed that HSP27 might directly or indirectly 
interact with caspase-3 and Calpain-1 to decrease their activity and 
decrease the proteolysis of myofibrillar proteins. However, the indi-
vidual contribution of HSPs to meat tenderization is difficult to elucidate 
and more investigations on the underlying mechanisms are needed. 

2.5. Exploration of protein biomarkers for meat tenderness 

Research has been carried out to identify potential protein bio-
markers to predict meat tenderness and reviews on the topic have been 
conducted (Ouali et al., 2013; Picard & Gagaoua, 2020). Guillemin et al. 
(2011) conducted a functional interactome analysis of 24 proteins and 
showed that apoptosis, heat shock protein functions and oxidative stress 
resistance were associated with tenderness although this varied between 
muscle types. However, HSP’s beta-1 and beta-6 were identified as 
robust biomarkers regardless of muscle type, breed and evaluation 
method of tenderness (Picard & Gagaoua, 2020). Similarly, MyHC-I 
(myosin heavy chain isoforms I), MyHC-IIa and cis-peroxiredoxin 
showed negative, but MyHC-IIx, parkinson disease protein 7 and 
Calpain-1 showed positive, association with tenderness regardless of 
breed, the end-point cooking temperature or the country origin of the 
panelist (Gagaoua, Terlouw, Richardson, Hocquette, & Picard, 2019). 
Picard and Gagaoua (2020) conducted meta-proteomics to integrate 
data across 12 studies. They identified variation between muscles and 
candidate biomarkers for beef tenderness could be grouped into proteins 
of structure and contraction, protection against oxidative stress and 
apoptosis, energy metabolism, 70 family HSPs and proteasome subunits 
in the longissimus and candidate bio-markers were identified which were 
consistent across muscles including several heat shock proteins. 

Despite extensive research over more than a decade, accurate 
tenderness prediction using these biomarkers remains a challenge and 
has not been adopted by the meat industry, partly because meat 
tenderization is a complex biological process that depends on many 
intrinsic and extrinsic factors along the supply chain (Gagaoua, Mon-
teils, & Picard, 2018). At present, while being of value in expanding our 
understanding of the tenderization process, the value of any of these 
biomarkers for predicting meat tenderness in a commercial environment 
remains to be seen. This is particularly because before any consideration 
of industry implementation, these potential biomarkers require exten-
sive validation not only across species but also across different carcasses 
and muscles and also in terms of their accuracy of prediction for both 
instrumental and sensory measurements. Furthermore, Warner et al. 
(2021) discuss that in order to use proteomics as a tool for identifying 
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biomarkers for meat quality, there is a need for hypothesis-driven pro-
teomics studies, rather than the current post-hoc explanations. 

2.6. Oxidative and nitrosative stress 

Reactive oxygen species (ROS) accumulate in postmortem muscle 
due to oxidative stress and altered mitochondrial activity. Oxidation of 
the amino acid side chains and backbone of proteins causes protein 
fragmentation and protein-protein cross-linkages which affects protein 
function and activity (Estevez, 2011; Zhang, Xiao, & Ahn, 2013). Meat 
tenderness can be promoted via ROS-mediated myofibrillar protein 
fragmentation (D’Alessandro & Zolla, 2013). Moreover, moderate 
oxidation of myofibrillar protein can enhance its susceptibility to 
Calpain-1 and caspases and then promote its degradation (Fu, Q.-q., Liu, 
R., Zhang, W., Ben, A., & Wang, R., 2020; Smuder, Kavazis, Hudson, 
Nelson, & Powers, 2010). However, ROS also cause the inactivation of 
Calpain-1, thus decreasing the proteolysis of myofibrillar proteins and 
inversely regulating meat tenderization (Lametsch et al., 2008). Anti-
oxidant enzymes including superoxide dismutase, catalase, glutathione 
dismutase, protein DJ-1 and peroxiredoxins are guardians against ROS, 
balancing the redox state of muscle cell. A range of antioxidant proteins 
and enzymes have been identified to vary within postmortem muscles, 
some of which are reported as biomarkers for the prediction of meat 
tenderness (Hwang, Park, Kim, Cho, & Lee, 2005; Jia et al., 2007). 
Specifically, superoxide dismutase had higher expression in tender meat 
(Guillemin, Jurie, et al., 2011; Guillemin, Bonnet, Jurie, & Picard, 2011) 
while peroxiredoxin 2 and 6 were more abundant in tough meat (Carl-
son et al., 2017; Jia et al., 2009). Protein DJ-1 is an antioxidant protein 
playing a protective role against oxidative stress, and in proteomic 
studies its expression has been found to gradually increase during 
postmortem aging in pork, beef and lamb (Jia et al., 2007; Picard, 
Gagaoua, Micol, Cassar-Malek, & Hocquette, J. F. o., & Terlouw, C. E., 
2014). Picard et al. (2014) used principal component analyses to 
demonstrate a relationship between protein DJ-1 and tenderness, which 
varied substantially between muscles; DJ-1 concentration was nega-
tively correlated with tenderness in ST but positively correlated with 
tenderness in LT muscle. In contrast, Jia et al. (2009) found that there 
was no difference in protein DJ-1 expression between bovine longissimus 
muscles with variable meat tenderness, demonstrating that clarification 
of whether there is any relationship between DJ-1 expression and meat 
tenderness is required. 

The origin of nitrosative stress in postmortem muscle is the pro-
duction of nitric oxide (NO) presumably by the activation of the enzyme 
nitric oxide synthase (NOS), induced by the hypoxic conditions (Liu 
et al., 2015; Man, Tsui, & Marsden, 2014) and the reduction of nitrite 
and nitrate in the acid postmortem muscle environment (Lundberg, 
Weitzberg, & Gladwin, 2008). Manipulation of NO levels pre-slaughter 
and postmortem could significantly affect meat tenderness, although 
the results have been inconsistent across studies, as extensively dis-
cussed in the review of Liu et al. (2018). Recently, Hou et al. (2020) 
reported that shear force was decreased by NOS inhibitors and increased 
by NO donors, indicating NO could suppress meat tenderization. NO and 
protein S-nitrosylation are involved in postmortem metabolism which 
might account for the variation in meat tenderization. A large number of 
proteins including glycolytic enzymes, antioxidant proteins and en-
zymes, myofibrillar proteins, Ca2+ channel components and heat shock 
proteins were identified to be S-nitrosylated in pork muscle (see Table 1; 
Liu, Fu et al., 2018). Those proteins were proposed to be involved in 
biochemical processes including glycolysis and pH decline, calpain 
autolysis and proteolysis and Ca2+ release from SR in postmortem 
muscle (Fig. 1). A well-elucidated mechanism is the inhibition of Cal-
pain- 1 autolysis leading to decreased myofibrillar protein degradation 
by NO-induced S-nitrosylation modification (Zhang, Pan, & Wu, 2018a) 
and the combination with calpastatin (Liu et al., 2019a). Glycolysis and 
pH decline were altered postmortem by manipulating NO levels in pork 
longissimus thoracis corresponding to decreased glycogen phosphorylase, 

glyceraldehyde-3- phosphate dehydrogenase and pyruvate kinase ac-
tivities with their improved modification of S-nitrosylation (Zhang et al., 
2019). Recently, significant differences in NOS activity, Ca2+ content, 
expression and S-nitrosylation modification of RyR1 and SERCA1 were 
observed between PSE and normal pork, suggesting NO and protein S- 
nitrosylation can putatively play a crucial role in regulating Ca2+ ho-
meostasis (Wang et al., 2019). Moreover, myofibrillar proteins can also 
be S-nitrosylated which has been found to affect the susceptibility to 
Calpain-1 proteolysis in vitro (Liu et al., 2019b). Hou et al. (2020) uti-
lized a NO donor (S-nitrosoglutathione, GSNO) and NOS inhibitor (Nω- 
nitro-L-arginine methyl ester hydrochloride, L-NAME) and incubated 
them with beef semimembranosus muscle immediately post-slaughter for 
24 h. Results showed that apoptosis-related morphological changes 
including more chromatin condensation, nucleus fragmentation, 
apoptotic body formation, and mitochondrial swelling were observed in 
L-NAME groups accompanied by higher caspase-3 and -9 activities while 
these changes in the GSNO group were retarded compared to the con-
trol. It was suggested that NO may play a negative role in beef apoptosis 
during postmortem aging. Taken together, NO and protein S-nitro-
sylation could exert an important role in the development of meat 
tenderness via pleiotropic pathways. 

3. Advances in animal and pre-slaughter effects 

Meat tenderness is affected by complex interactions of multiple 
antemortem and postmortem factors and in this section we review the 
pre-slaughter factors, with a focus on the animal. Fig. 2 illustrates the 
interactions between the antemortem factors and the affected metabolic, 
molecular, and enzymatic processes and systems. 

3.1. Breed effects 

Breed and genotype determine an animal’s potential for producing 
tender meat, and the interaction of genetics with ante- and postmortem 
environment and management will determine the ultimate tenderness of 
the meat from an animal. Palatability trait differences have been char-
acterized among cattle breeds (Koch, Dikeman, & Crouse, 1982; 
Wheeler, Cundiff, Shackelford, & Koohmaraie, 2001, 2004, 2005) and 
are considered in cross breeding programs. On average, aged longissimus 
from Jersey, Pinzgauer, Piedmontese, Red Poll, South Devon, Angus, 
and Wagyu tends to be more tender and longissimus from the Bos indicus 
breeds tend to be less tender, while a majority of breeds produce long-
issimus that is intermediate in tenderness. Cattle with Bos indicus in-
heritance are commonly used in tropical and subtropical environments 
(Cole, Ramsey, Hobbs, & Temple, 1964). The heat tolerance and insect 
resistance possessed by these breeds, coupled with their maternal 
characteristics and advantages from increased heterosis, have made 
them a valuable part of beef production in the tropical and subtropical 
environments (Cole et al., 1964; Crockett, Baker Jr, Carpenter, & Koger, 
1979; Cundiff, Gregory, Koch, & Dickerson, 1986). However, Bos indicus 
cattle, especially Brahman and Nellore, have been repeatedly reported 
to produce tougher meat than Bos taurus cattle (Crouse, Cundiff, Koch, 
Koohmaraie, & Seideman, 1989; Johnson, Huffman, Williams, & Har-
grove, 1990; Koch et al., 1982; Peacock, Koger, & Hodges, 1982; 
Wheeler, Cundiff, et al., 2001; Wheeler, Cundiff, Koch, & Crouse, 1996; 
Wheeler, Savell, Cross, Lunt, & Smith, 1990a, 1990b) due to less cal-
pastatin inactivation and thus increased calpastatin levels at later 
postmortem times (Pringle, Williams, Lamb, Johnson, & West, 1997; 
Wheeler et al., 1990a; Whipple et al., 1990), resulting in less proteolytic 
degradation and slower improvements in tenderness with aging 
(O’Connor, Tatum, Wulf, Green, & Smith, 1997; Wheeler et al., 1990a, 
1990b; Whipple et al., 1990). However, numerous other metabolic dif-
ferences also may contribute to the reduced tenderness of Bos indicus- 
influenced cattle (Wright et al., 2018). The use of composite breeds 
comprised of 3/8 or 5/8 Bos indicus inheritance is common among beef 
producers to incorporate the positive attributes of Bos indicus cattle, but 
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Table 1 
S-nitrosylated proteins and SNO-modified cysteine sites identified in pork longissimus thoracis during postmortem aging. The data shows evidence 
of nitrosylation of cysteine sites within key specific proteins postmortem after 0 days of ageing and also an increase in nitrosylation of these 
cysteine sites after 3 days ageing (adapted from Liu et al. (2018)). 

Protein Accession Peptide sequence
Cys-

site1
A02 A32

SD
A02

SD
A32

P-value

Aldolase C F1RJ25
KGVVPLAGTDGETTTQGLDGLSER

C1AQYKKD
135 1.005 1.744 0.046 0.066 0.0058

Alpha-Ac�nin-1 I3LIK6
R.LHKPPKVQEKC1QLEINFNTLQT

KL
112 0.618 0.946 0.013 0.043 0.0002

ATP-dependent 6-

phosphofructokinase
Q2HYU2 RLPLMEC1VQVTKD 351 0.844 1.097 0.117 0.069 0.0325

ATP-dependent 6-

phosphofructokinase
Q2HYU2 RIFANTPDSGC1VLGMR.K 709 0.935 1.297 0.007 0.071 0.0010

Beta-Enolase Q1KYT0 KFGANAILGVSLAVC1KAGAAEKG 119 0.595 0.638 0.107 0.120 0.6703

Beta-Enolase Q1KYT0 KTGAPC1RSER.L 399 1.392 2.174 0.084 0.189 0.0028

Beta-Enolase Q1KYT0 KVNQIGSVTESIQAC1]KL 357 0.968 1.338 0.006 0.061 0.0005

Glucose-6-phosphate 

isomerase
F1RNU9 KMIPC1DFLIPVQTQHPIR.K

404
0.786 1.038 0.036 0.030 0.0008

Glutathione reductase F1RX66 RKTKC1VMKM 432 0.565 0.720 0.012 0.045 0.0047

Glyceraldehyde-3-

phosphate 

dehydrogenase

Q0QES9 KIVSNASCTTNC1LAPLAKV

131

0.789 1.563 0.009 0.124 0.0004

Glyceraldehyde-3-

phosphate 

dehydrogenase Q0QES9

RVPTPNVSVVDLTC1RL 222 0.864 1.502 0.077 0.222 0.0093

Heat shock protein HSP 

90-alpha
O02705 KKTKFENLC1KL 573 0.603 0.793 0.051 0.090 0.0355

L-lactate dehydrogenase 

A chain
P00339 KNRVIGSGC1NLDSARF 163 0.989 1.940 0.057 0.174 0.0008
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breeds with 3/8 or 5/8 Bos indicus such as Brangus, Beefmaster and 
Santa Gertrudis still tend to have tougher longissimus on average than 
Bos taurus breeds (Bidner, Wyatt, Humes, Franke, & Blouin, 2002; 
Crouse et al., 1989; Johnson et al., 1990; O’Connor et al., 1997; 
Wheeler, Cundiff, Shackelford, & Koohmaraie, 2010). For this reason, 
the Australian Meat Standards Australia eating quality assurance system 
for beef predicts lower consumer scores for any cattle with Bos Indicus 
content greater than 25% (Polkinghorne, Philpott, Gee, Doljanin, & 
Innes, 2008). However, there have been three tropically-adapted Bos 
taurus breeds (Tuli, Bonsmara, and Romosinuano) identified that do not 
have reduced tenderness (Wheeler et al., 2005; Wheeler, Cundiff, et al., 
2001). Since there is as much or more variation within breeds (6 genetic 
standard deviations) as between the most extreme breed averages (5 

genetic standard deviations) for tenderness, the opportunity for 
improving tenderness by selecting seedstock within a breed may be as 
great, or greater, than by changing breeds (Wheeler et al., 1996). Dif-
ferences in meat tenderness among lamb breeds also have been 
described (Hopkins & Fogarty, 1998; Warner, Greenwood, Pethick, & 
Ferguson, 2010). Shackelford, Leymaster, Wheeler, and Koohmaraie 
(2012) reported that among 10 sheep breeds, Finnsheep, Romanov, and 
Katahdin sired lambs had more tender longissimus at 7 days postmortem 
than did Dorset, Suffolk and composite (Columbia, Hampshire, Suffolk) 
sired lambs. Hopkins and Mortimer (2014) include an overview of the 
subtle sheep breed effects on eating quality. 

L-lactate dehydrogenase 

C chain
Q9TSX5 RVIGSGC1NLDSARF 163 0.912 1.853 0.016 0.045 <0.0001

Malate dehydrogenase P11708 KAIC1DHVR.D 251 0.771 1.141 0.013 0.056 0.0004

Malate dehydrogenase P11708 KVIVVGNPANTNC1LTASKS 137 0.913 1.514 0.054 0.006 <0.0001

Phosphoglycerate kinase1 Q7SIB7 KAAIPSIKFC1LDNGAKS 50 0.926 1.720 0.053 0.181 0.0019

Phosphoglycerate kinase1 Q7SIB7
KIGQATVASGIPAGWMGLDC1GP

ESSKKY
316 0.912 1.383 0.003 0.07 0.0003

Phosphoglycerate kinase1 Q7SIB7 KAC1ADPAAGSVILLENLRF 108 0.677 0.846 0.068 0.088 0.0590

Protein DJ-1 F1RII4 KVTVAGLAGKDPVQC1SR.D 46 0.806 1.504 0.030 0.037 0.0024

Sarcoplasmic\endoplasmi

c re�culum calcium 

ATPase1

F1RFH9 RANAC1NSVIRQ 471 0.831 2.221 0.021 0.130 <0.0001

Ti�n / KKTTC1KLKM 2352 0.652 0.862 0.049 0.010 0.0019

Triosephosphate 

isomerase
Q29371 KIAVAAQNC1YKV 67 0.787 1.548 0.042 0.206 0.0033

Triosephosphate 

isomerase
Q29371 RIIYGGSVTGATC1KE 218 0.919 1.267 0.012 0.046 0.0002

Aldolase C F1RJ25
KGVVPLAGTDGETTTQGLDGLSER

C1AQYKKD
135 1.005 1.744 0.046 0.066 0.0058

1 The cysteine (C) in red indicates that this is modified by S-nitrosylation and the specific site of the cysteine is also shown. 
2 The proportion of modification of the specific SNO-sites in A0 and A3 samples was relative to that of G100 samples, where G100 represents 1.0. 
A0 and A3 represent the average of three replicate samples for 0 and 3 d ageing of pork longissimus thoracis, respectively. G100 refers to the A0 
sample incubated with 100 μM S-nitrosoglutathione (GSNO), which is an NO donor. SD A0 and SD A3 represent the standard deviation for the 
three replicate samples. 
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3.2. Major genes 

A mutation in the myostatin gene has been associated with the 
condition in cattle known as “double muscling” (Arthur, 1995; Grobet 
et al., 1998; Kambadur, Sharma, Smith, & Bass, 1997; McPherron & Lee, 
1997; Smith, Lopez-Corrales, Kappes, & Sonstegard, 1997). Carcasses of 
double muscled cattle yield a greater percentage of retail product than 
carcasses of normal cattle (Wheeler et al., 2001) and meat from these 
animals is more tender, predominantly due to reduced collagen con-
centration (Ngapo et al., 2002; Wheeler et al., 2001). The myostatin 
mutation found in the Limousin cattle (F94L) results in improved meat 
tenderness, but to a lesser extent than those in Piedmontese and Belgian 
Blue cattle (Bennett et al., 2019; Lines, Pitchford, Kruk, & Bottema, 
2009). Furthermore, F94L interacts with CAPN1 (see section below) 
polymorphisms such that the CAPN1 effect on increased tenderness is 
less pronounced. 

Callipyge is a muscle hypertrophy condition in sheep that causes 
dramatic toughening of the resulting meat, but with variation among 
muscles (Carpenter, Rice, Cockett, & Snowder, 1996; Cockett et al., 
1994, 2005; Freking, Keele, Nielsen, & Leymaster, 1998; Koohmaraie, 
Shackelford, Wheeler, Lonergan, & Doumit, 1995). It is associated with 
increased calpastatin activity and hence decreased protein degradation 
postmortem by Calpain-1 (Freking et al., 1998; Koohmaraie et al., 1995; 
Lorenzen et al., 2000). 

3.3. Genomic markers 

Measures of beef tenderness have been reported to be moderately 

heritable, with estimates ranging from 0.30 to 0.53 (Shackelford et al., 
1994; Wheeler et al., 1996, Wheeler, Cundiff, et al., 2001; Wheeler et al., 
2004, 2005; Dikeman et al., 2005). Smith et al. (2003) estimated that 
46% of the variation in beef tenderness is genetic and 54% is environ-
mental. In Australia, Bos indicus or tropically adapted breeds have a 
higher heritability for tenderness (longissimus WBSF h2=0.30; consumer 
panel tenderness score h2=0.31) and phenotypic variance compared to 
Bos taurus breeds (WBSF h2=0.09; consumer panel tenderness score 
h2=0.1) (Johnston, Reverter, Ferguson, Thompson, & Burrow, 2003). 
Whereas heritability of WBSF in pork in the Canadian pig population is 
39% (Miar et al., 2014) and in the Australian sheep population is 20 and 
36% for longissimus and semitendinosus respectively for sensory assess-
ments and 24% for WBSF in the longissimus (Mortimer, Swan, Pannier, 
Ball, & Jacob, 2015). These data indicate that improving tenderness via 
genetic selection is possible. However, the degree to which a trait is 
influenced by genes versus environment will depend on the particular 
environment and genes of each specific situation (Warner et al., 2010). 

Historically, in order to improve tenderness, breeding animals with 
superior genetic potential must be identified either through progeny 
testing or by direct measurements on the breeding animals themselves. 
The costs and time requirements associated with accurate collection of 
tenderness data has limited the use of progeny testing for tenderness 
traits in commercial practice. The use of genetic marker-assisted selec-
tion would allow greater efficiency in genetic progress with regard to 
tenderness. The development and implementation of genetic markers 
has been described in some detail (Allan & Smith, 2008; Smith et al., 
2003; Warner et al., 2010). Single nucleotide polymorphism (SNP) 
markers with significant utility for marker-assisted selection have been 

Fig. 1. Proposed pathways of nitric oxide involvement in postmortem aging including energy metabolism, glycolysis, calpains, calcium release, apoptosis and 
proteolysis via protein S-nitrosylation. 
Abbreviation: NOS: nitric oxide synthase, NO: nitric oxide, RyR: ryanodine receptor, SERCA: Sarcoplasmic\endoplasmic reticulum calcium ATPase, PFK: phos-
phofructokinase, GP: glycogen phosphorylase, PK:pyruvate kinase. 
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identified in beef in the calpain system for the CAPN1 gene (Page et al., 
2002, 2004; White et al., 2005) and the CAST gene that codes for the 
inhibitor of calpains, calpastatin (Casas et al., 2005, 2006; Schenkel 
et al., 2006) and in pork (Lindholm-Perry et al., 2009; Nonneman et al., 
2011, 2013; Rohrer, Thallman, Shackelford, Wheeler, & Koohmaraie, 
2005). In the last 15 years or so, the association of multiple SNPs in both 
calpain and calpastatin genes in a wide variety of breeds of cattle, goats, 
sheep and pigs with variations in meat tenderness and other aspects of 
meat quality has been a very active area of research. Leal-Gutiérrez, 
Elzo, Johnson, Hamblen, and Mateescu (2019) reviewed the effects of 3 
CAPN SNPs (Capn4751, Capn316, Capn530) and three CAST SNPs 
(UoG-Cast, Cast2959, Cast2832) in some detail. Therefore, it appears 
that markers for both of these genes (CAPN1, CAST) can be used 
simultaneously in breeding programs to improve tenderness. Some of 
these research population-developed markers (CAPN1 316 and 4751; 
CAST-T1) have been validated on independent beef longissimus samples 
from USA commercial meat processors (Shackelford, personal commu-
nication) and their value in offsetting some of the negative impact of 
aggressive implant strategies on longissimus tenderness has been 
demonstrated (King et al., 2012). Additional SNPs have been identified 
with significant association with pork tenderness (Ji et al., 2018), but 
need to be validated for commercial pigs. Genetic markers for tender-
ness are now available in commercial SNP chip assays in a variety of 
formats for high density genotyping (50K and 770K for beef, 60K for 
pork, and 50K for lamb) using HD bead-chip assays. This technology has 
allowed development of genomically enhanced expected progeny dif-
ferences (EPDs). However, further improvements in the accuracy of 
reference genomes and continued improvement in next generation 
sequencing technology at progressively lower cost have made geno-
typing by sequence a feasible option with some advantages. These ad-
vancements will lead to improved accuracy of whole genome sequence 
imputation that increases the ability to identify causal genetic variants 

and improve genomic selection for traditional and novel traits like 
tenderness (Butty, 2019). 

3.4. Growth promotants 

Improving the rate and efficiency of growth in market animals, and 
carcass leanness, are important economic considerations for livestock 
producers. Therefore, the administration of agents that partition nutri-
ents towards muscle deposition is a common practice in many countries. 
The most common metabolic modifiers used in meat production include 
anabolic steroids and β-adrenergic agonists (BAA). At least 90% of steers 
and heifers fed in the USA receive anabolic steroid implants (Dikeman, 
2007), which can be classified according to their active ingredient (es-
trogens, progestins, androgens, or combination). Of these, the combi-
nation implants at multiple timepoints are considered to be more 
“aggressive”, because they generally provide greater increases in growth 
rate and feed efficiency (Dikeman, 2007). A wide variety of products are 
available commercially and the impact on meat tenderness depends on 
the kind and number of implants. For example, a meta-analysis was used 
to show that the application of anabolic steroids reduces consumer 
tenderness scores by 5 units and increases WBSF by 4.1 N (Dunshea, 
D’Souza, Pethick, Harper, & Warner, 2005). However, these effects are 
largely dependent on the implanting strategy used. As implanting stra-
tegies increase in aggressiveness (use of combination and/or multiple 
implants), the negative effect on tenderness is amplified, particularly 
when used within 70 days of the harvest date (Dikeman, 2003; Platter, 
Tatum, Belk, Scanga, & Smith, 2003). Anabolic steroid implants are not 
used in pig, sheep and poultry production in Australia/New Zealand and 
USA and in many other countries. Anabolic steroid implants are also not 
used in cattle production in many countries, particularly in Europe; 
about 40% of Australian cattle are free of anabolic steroid implants 
whereas only a small percentage of USA cattle production are implant 

Fig. 2. Overview of the interactions between antemortem factors, postmortem factors, metabolic and molecular processes, and the affected enzymatic systems 
relevant for meat tenderization. 

R.D. Warner et al.                                                                                                                                                                                                                              



Meat Science 185 (2022) 108657

9

free. 
Use of BAA’s, such as ractopamine and zilpaterol, in pigs and cattle, 

dramatically increases lean growth. However, numerous reports indi-
cate that administration of BAA’s has negative effects on the tenderness 
of beef and pork (Dikeman, 2003, 2007; Dunshea et al., 2005; Lean, 
Thompson, & Dunshea, 2014). Feeding BAA’s has been reported to in-
crease calpastatin activity which results in greater muscle hypertrophy 
and decreased tenderness primarily from the inhibition of postmortem 
proteolysis (Koohmaraie, Shackelford, Muggli-Cockett, & Stone, 1991; 
Koohmaraie, Shackelford, & Wheeler, 1996). These negative effects on 
tenderness may be even greater when combined with aggressive 
anabolic steroid implant strategies. In August 2013, the manufacturer of 
zilpaterol withdrew it from the USA and Canadian markets after the USA 
Food and Drug Administration (FDA) received reports of lameness or 
lying down of cattle fed zilpaterol (Dunshea, D’Souza, & Channon, 
2016). Thus, some jurisdictions have a zero tolerance level for certain 
BAA’s and this is likely to impact export markets and may limit in- 
country use of a BAA, in order to protect export markets (Centner, 
Alvey, & Stelzleni, 2014). Aroeira, Feddern, Gressler, Contreras Castillo, 
and Hopkins (2020) recently reviewed the impact of growth promoting 
compounds in cattle and pigs including minor negative effects on eating 
quality. 

3.5. Animal age 

Production systems vary throughout the world, and therefore ani-
mals are harvested at different points in their life-cycle. Animals har-
vested at very young ages will generally be very lean, and smaller than 
those of mature animals. Therefore, their carcasses may chill more 
rapidly, potentially resulting in cold-induced toughening (Cross, Crouse, 
& MacNeill, 1984). In addition, as animals mature, intermolecular cross- 
links stabilize the connective tissue matrix of muscle and increased 
collagen stability is associated with increased toughness (Purslow, 
2018). However, animals undergoing rapid growth will have a higher 
proportion of newly synthesized, heat-labile collagen (Aberle, Reeves, 
Judge, Hunsley, & Perry, 1981). Therefore, age effects can be partially 
mitigated by feeding mature animals a high-energy diet (Boleman, 
Miller, Buyck, Cross, & Savell, 1996; Miller, Cross, Crouse, & Jenkin, 
1987). However, Purslow (2018) concludes that although heat-soluble 
collagen explains some of the tenderness differences among muscles 
and ages of animals, there is considerable variation in the strength of this 
effect. He further concludes that the future focus should be on the heat- 
insoluble fraction of collagen to develop strategies to reduce cooked 
meat toughness of some muscles (Purslow, 2018). Such strategies are 
most likely to involve manipulation of the turnover of intramuscular 
connective tissue in the live animal by stimulation of collagen degra-
dation and collagen resynthesis (Purslow, Archile-Contreras, & Cha, 
2012) even though collagen turnover in muscle is slower than in some 
other tissues (Laurent, 1987). This may include supplements of vitamins 
C and E (Archile-Contreras, Cha, Mandell, Miller, & Purslow, 2011) and 
use of selected growth promotants (Roy, Sedgewick, Aalhus, Basarab, & 
Bruce, 2015 or selection of animals for single nucleotide polymorphisms 
in the matrix metalloproteinase-1 collagenase that is known to reduce 
the strength of raw perimysium in cattle (Christensen, Monteavaro, & 
Purslow, 2020). 

3.6. Castration effects on meat tenderness – focus on cattle and pigs 

The castration of male domestic animals of most species, with the 
exception of breeding stock, has been practiced for centuries. Histori-
cally, the main reasons for castration were to control the reproductive 
status of females (as often males and females were kept together), to 
reduce negative and aggressive behaviors and to fatten animals. How-
ever, in some parts of the world bull calves from dairy production are 
sometimes not castrated, and in some countries entire male pigs are 
raised to take advantage of the lean and rapid growth. It should be noted 

that in Australia, where traditionally male pigs are not castrated, 
immuno-castration is used on 65% of the male pig population, to reduce 
the risk of boar taint (Dunshea et al., 2016). Castration of pigs will likely 
decrease particularly in the EU, as castration without the use of anaes-
thetics increasingly becomes an animal welfare issue (Prunier et al., 
2006). In 2014, the EU passed a resolution banning surgical castration 
without anesthetic but as this is voluntary, some countries in 2020 are 
still castrating pigs without pain relief (Aluwé et al., 2020). 

Young, intact males produce more rapid and efficient growth and 
result in leaner carcasses than their steer/wether (castrated sheep and 
goats) counterparts, but are associated with management problems, 
most notably behavior (Goetsch, Merkel, & Gipson, 2011; Nagamine & 
Sunagawa, 2017; Sales, 2014; Seideman, Cross, Oltjen, & Schanbacher, 
1982). In a literature review on the use of intact males for beef pro-
duction, Seideman et al. (1982) concluded that meat from bull carcasses 
was less tender and more variable than the meat produced by steer 
carcasses. Using a meta-analysis, Sales (2014) demonstrated that rams 
had higher WBSF values (tougher meat) than wether castrates and 
Nagamine and Sunagawa (2017) showed that castrated goats had lower 
WBSF and the meat had lower odour/taint scores than uncastrated billy 
goats. In the case of cattle, Cross et al. (1984) suggested that higher 
concentrations of less-soluble collagen could contribute to these differ-
ences. Morgan et al. (1993) reported longissimus steaks from bull car-
casses have higher shear force values and less myofibril fragmentation 
than longissimus steaks from steer carcasses due to higher calpastatin 
activity in muscle from bull carcasses. Higher incidence of DFD meat in 
entire male cattle (Tarrant, 1989) and pigs (D’Souza, Warner, Dunshea, 
& Leury, 1999) could contribute to decreased tenderness, as interme-
diate pH is known to often have increased toughness relative to normal 
and high pH meat (Purchas & Aungsupakorn, 1993). The use of intact 
boars for pork production has some impacts on tenderness measured by 
sensory tenderness, but these are relatively small, being of the order of 3 
units on a 100 point hedonic scale (Channon et al., 2018; Channon, 
Hamilton, D’Souza, & Dunshea, 2016; Seideman et al., 1982; Warner, 
Dunshea, & Channon, 2018). The magnitude of these differences in 
tenderness are similar to those observed with equivalent increases in 
carcass leanness obtained through genetic selection for lean growth and 
may be an inherent consequence of the production of leaner meat 
(Warner et al., 2021) . However, there is always a risk of boar taint with 
raising intact males, which can be overcome with immuno-castration 
(Channon et al., 2018). Carcasses can be selected for boar taint using 
a variety of chemical or sensory techniques but tainted pork still needs to 
be used and further processing does not necessarily eliminate the boar 
taint issue (Tørngren, Claudi-Magnussen, Støier, & Kristensen, 2011). 

3.7. Grain feeding 

In many countries, cattle, sheep, and goats are commonly placed in 
feedlots to produce rapid, efficient growth from a high energy diet. This 
practice has been reported to produce heavier, fatter, and more 
muscular carcasses, with higher intramuscular fat, compared to forage 
feeding (Aberle et al., 1981; Bowling, Smith, Carpenter, Dutson, & 
Oliver, 1977; Warner, Dunshea, Gutzke, Lau, & Kearney, 2014). Grain- 
fed animals also generally produce steaks that are more tender than 
steaks from grass -fed animals, except that the increased mass and fat 
thickness in grain-fed carcasses, along with higher body temperature, 
slows chilling, which can sometimes result in heat-toughening (Warner 
et al., 2014). But the improved tenderness of grain fed animals is likely 
attributable to increased growth rate associated with increased protein 
turnover (Koohmaraie, Kent, Shackelford, Veiseth, & Wheeler, 2002), 
postmortem proteolysis (Aberle et al., 1981; Purchas, Sobrinho, Garrick, 
& Lowe, 2002), collagen solubility (Aberle et al., 1981), increased 
marbling and reduced incidence of high pH DFD meat (Warner, Trus-
cott, Eldridge, & Franz, 1988). 

Vitamin D supplementation to improve tenderization has increas-
ingly attracted research attention. The use of vitamin D is thought to 
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result in increased mobilization of calcium ions and thus more calpain 
activity. Indeed, supplementation of vitamin D3 or its metabolite 25- 
hydroxyvitamin D3 was reported to lead to increased muscle calcium 
concentration and calpain-induced degradation of troponin-T (Carnagey 
et al., 2008; Foote et al., 2004; Montgomery et al., 2004). Feedlot sup-
plementation with vitamin D3 and its metabolites has been shown to 
reduce the shear force of meat from heifers and steers (Duffy et al., 2017; 
Montgomery et al., 2004), but not cull cow (Sell, Mikel, Xiong, & Beh-
rends, 2004), lamb (Boleman, McKenna, Ramsey, Peel, & Savell, 2004), 
pork (Duffy et al., 2018; Wiegand et al., 2002) or Bos indicus cattle 
(Lawrence et al., 2006). It is worth noting that reports on the effec-
tiveness of vitamin D3 on shear force and sensory tenderness vary in 
these studies, likely due to differences in level and type of supplemen-
tation, species and breed, carcass characteristics, muscle and aging time. 
Thus, vitamin D3 and its metabolite supplementation for the purpose of 
improved tenderization requires further research. 

It is also worth mentioning that carcass weight has been steadily 
increasing in most animal production systems due to various factors, 
including changes in genetics, animal husbandry, nutrition, slaughter 
age and growth promotants. Heavier carcasses present challenges in 
chilling and pH-temperature decline management. A substantial amount 
of research has been conducted to optimize different chilling technolo-
gies (e.g. blast chilling, rapid chilling, very fast chilling, cryogenic 
chilling, spray chilling, Rinse&Chill®) (Zhang et al., 2019). Studies 
examining the effect of carcass weight on quality of feedlot steers re-
ported heavier carcasses had a faster pH decline, a slower temperature 
decline, and passed through the heat shortening window (>35 ◦C at pH 
6) (Agbeniga & Webb, 2018; Warner et al., 2014). However, in the study 
of Agbeniga and Webb (2018), the sarcomere length was not affected by 
carcass weight, nor was the shear force after 14 days of aging. Using 
regression analysis, Okeudo and Moss (2005) found a significant cor-
relation between carcass weight and shear force of different lamb 
muscles. On the other hand, a meta-analysis found no relationship be-
tween beef carcass weight and sensory tenderness (Trefan, Doeschl- 
Wilson, Rooke, Terlouw, & Bunger, 2013). The mechanism through 
which increased carcass weight may influence meat tenderness is multi- 
faceted due to the compounding effects of other carcass characteristics 
such as growth rate (potential effect on calpains), subcutaneous fat , 
intramuscular fat, collagen content, muscle type and aging. Although it 
is tempting to recommend further research, these compounding/con-
founding factors suggest that accurate description of all these attributes 
for carcass and quality phenotypes is critical. This is particularly evident 
in the lack of reporting of these critical attributes in the methodology 
section of many journal publications. 

4. Advances in postmortem factors influencing tenderization, 
including cooking 

Postmortem changes in muscle involve complex biological processes 
which are influenced by intrinsic and extrinsic factors. An understand-
ing of postmortem physical and biochemical changes that impact meat 
tenderness, including during the cooking process, is therefore crucial. 
There are a wide variety of postmortem treatments and conditions that 
affect the tenderness of the final product, and a comprehensive review of 
all of these is not possible here. In this section, we focus on those which 
have greatest relevance to two of the molecular mechanisms discussed 
above, namely oxidation and postmortem proteolysis, as well as those 
that have direct effects on the integrity of the structure of muscle tissue. 
Freezing and thawing of meat disrupts structures and may release cal-
cium ions and affect proteolysis. Several postmortem treatments of raw 
meat, including pulse electric field and ultrasonic treatments, have a 
primary effect of enhancing endogenous proteolysis, whereas hydro-
static and dynamic high-pressure treatments appear to primarily disrupt 
meat microstructure without enhancing proteolysis. Treatment of meat 
by exogenous (mainly plant-based) enzymes is another postmortem 
treatment with an obvious focus on tenderization by proteolysis. The 

final step of the production to consumption chain is the cooking of meat, 
which brings about its own structural effects, and in its initial stages may 
also promote proteolysis. Fig. 2 demonstrates the interactions between 
some of the postmortem factors, metabolic and molecular processes and 
enzymatic systems involved in meat tenderization. 

4.1. Oxidation 

An important postmortem change during meat aging, or during 
frozen storage, is the potential for increased levels of oxidation. Post-
mortem oxidation occurs in both lipid and protein components, and the 
link between lipid and protein oxidation has been established (Faust-
man, Sun, Mancini, & Suman, 2010). The negative effects of lipid 
oxidation on sensory traits are well recognized but the focus here is on 
protein oxidation and its effects on tenderization. Oxidation of myofi-
brillar and sarcoplasmic proteins has been shown to result in the for-
mation of carbonyl derivatives and disulfide cross-links. These chemical 
changes lead to (i) inactivation of calpains which are essential for the 
tenderization process and (ii) an increase in toughness due to myofi-
brillar protein aggregation. Multiple reviews have focused on the causes, 
mechanism and effect of oxidation on meat quality, including tenderness 
(Bao & Ertbjerg, 2018; Estevez, 2011; Estevez et al., 2020; Warner, 
Dunshea, Ponnampalam, & Cottrell, 2005; Zhang, Xiao, & Ahn, 2013). 
Minimizing postmortem protein oxidation is therefore an important 
approach to improve meat tenderness. 

4.1.1. Oxidation during aging and storage 
Postmortem oxidation of meat proteins can occur within 24 hours 

following slaughtering, if conditions are inducive to oxidation (Rowe, 
Maddock, Lonergan, & Huff-Lonergan, 2004a). Xue, Huang, Huang, and 
Zhou (2012) showed that in vitro exposure of beef myofibrillar proteins 
to H202 and Fe2+ led to a reduction in troponin-T degradation, 
demonstrating that oxidative modifications of myofibrillar proteins 
changed their susceptibility to Calpain-1. A similar study on pork long-
issimus showed that OH⋅-induced oxidation of myosin leads to protein 
polymerization and aggregation, resulting in a reduced proteolytic 
susceptibility (Morzel, Gatellier, Sayd, Renerre, & Laville, 2006). In 
addition, oxidation has been shown to decrease activity of Calpain-1, 
and inactivate calpastatin (Rowe, Maddock, Lonergan, & Huff- 
Lonergan, 2004b). Thus, industry-adoptable approaches, such as sup-
plementing animal feeds with antioxidants, have been developed to 
increase protection of myofibrillar proteins against oxidation during 
meat aging. A decrease in calpastatin activity and a significant increase 
in Calpain-1 activation and proteolysis of troponin-T in steaks from vi-
tamins E and C fed steers was observed compared to steers fed con-
ventional feedlot diets (Pogge, Lonergan, & Hansen, 2015; Rowe et al., 
2004b). Recent research with bovine fibroblasts from longissimus and 
semitendinosus suggests vitamins E and C can modulate collagen syn-
thesis and degradation which have implications for postmortem meat 
tenderness (Archile-Contreras et al., 2011; Archile-Contreras & Purslow, 
2011). 

4.1.2. Oxidation in packaging 
The effect of packaging on oxidation status of meat protein has been 

well established. Application of high oxygen modified atmosphere 
packaging (hiOxMAP) in retail display has been shown to result in a 
dramatic reduction in both instrumental and sensory tenderness of 
different muscles from beef, pork, lamb and poultry meats (Bao & 
Ertbjerg, 2015; Frank et al., 2017; Fu et al., 2015; Geesink, Robertson, & 
Ball, 2015; Jongberg, Wen, Tørngren, & Lund, 2014; Lorenzo & Gomez, 
2012; Peng et al., 2019). The negative impact of hiOxMAP on eating 
quality, including tenderness, of meat, is believed to be a direct result of 
oxygen-induced oxidation. Meat packed in hiOxMAP has been shown to 
have both a loss of free thiol groups and an increase in total carbonyl 
content compared to those of meat packed in vacuum (Bao & Ertbjerg, 
2015; Chen, Zhou, & Zhang, 2015; Lund, Lametsch, Hviid, Jensen, & 
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Skibsted, 2007). These chemical modifications of meat proteins are 
linked to reduced proteolysis measured by myofibril fragmentation 
index (Clausen, Jakobsen, Ertbjerg, & Madsen, 2009) and desmin 
degradation (Fu et al., 2015) and increased cross-linking between 
myosin heavy chains (Bao & Ertbjerg, 2015; Kim, Huff-Lonergan, 
Sebranek, & Lonergan, 2010; Lund, Luxford, Skibsted, & Davies, 2008; 
Zakrys-Waliwander, O’Sullivan, O’Neill, & Kerry, 2012), cross-linking 
between myosin heavy chains and titin (Kim et al., 2010), and 
decreased Calpain-1’s catalytic activity (Fu et al., 2015; Lindahl, 
Lagerstedt, Ertbjerg, Sampels, & Lundstrom, 2010). 

In order to reduce the negative impact of high oxygen modified at-
mosphere packaging on meat tenderness, various approaches have beed 
tested, with varying success. These include lowering the oxygen content 
(Bao & Ertbjerg, 2015; Resconi, Escudero, & ¡n, J., Olleta, J., Ýudo, C., & 
Mar Campo, M. a. d., 2012; Spanos, Torngren, Christensen, & Baron, 
2016), injection of calcium lactate/phosphate (Cruzen et al., 2015), 
modification of the gas content and headspace (Murphy, O’Grady, & 
Kerry, 2013; Spanos et al., 2016), use of carbon monoxide and sodium 
nitrite (Djenane & Roncalés, 2018; Roberts et al., 2017), feeding diets 
high in anti-oxidants (Ripoll, Joy, & Munoz, 2011), and development of 
active and smart packaging materials (Arvanitoyannis & Stratakos, 
2012). While studies on these packaging methods report varying levels 
of success in suppressing oxidation, their adoption in industry will 
depend on further research in cost-benefit analysis, adaptability to the 
current supply chain, and food regulations. It is worth noting that 
oxidation-induced chemical modifications of proteins differ across 
different meat types and cuts. For example, desmin degradation was 
reduced as a result of hiOxMAP for beef longissimus (Fu et al., 2015) but 
not for pork longissimus (Lund et al., 2008; Bao & Ertbjerg, 2015). 
Similarly, a study on packaging of chicken breast (pectoralis major) and 
thigh (peroneus longus) showed that a similar increase in oxidation 
measured by thiol loss and protein cross-linking in both muscles due to 
hiOxMAP did not result in the same reduction in sensory tenderness 
score for the two muscles (Jongberg et al., 2014). Thus, optimization of 
MAP packaging for meat retail display will need to be species- and 
muscle-specific. While further developments in packaging technologies 
are on-going, extensive evidence has shown that vacuum packaging and 
vacuum skin packaging are ready-to-adopt alternatives to MAP which 
can ensure optimal tenderization and eliminate oxidation-induced 
toughening of meat. These low/no oxygen packaging systems are re-
ported to result in more degradation of troponin-T and desmin, less 
myosin cross-linking, reduced WBSF, and increased consumer sensory 
acceptability (Holman, Kerry, & Hopkins, 2018). 

4.1.3. Oxidation in other meat processing methods 
Other postmortem methods for processing of meat, such as freezing/ 

thawing, irradiation, pressure treatment and cooking, also influence the 
oxidation status of meat proteins and hence meat tenderness (Bao & 
Ertbjerg, 2018; Guyon, Meynier, & de Lamballerie, 2016; Leygonie, 
Britz, & Hoffman, 2012; Yu, Morton, Clerens, & Dyer, 2017). Specific 
settings of the parameters in these processes, e.g. rate and number of 
freezing/thawing cycles; magnitude of pressure; and cooking tempera-
ture, have been shown to result in varying levels of protein oxidation. 
For instance, a significant increase in protein oxidation, measured as 
carbonyl content, in pork longissimus, was observed at 100 ◦C and 140 ◦C 
compared to pork cooked at 70 ◦C (Bax et al., 2013). Oxidation of meat 
proteins due to these processes not only affect tenderization of fresh 
meat but also protein functionality during subsequent processing, e.g. 
processed meat products (Buckow, Sikes, & Tume, 2013; Utrera & 
Estevez, 2012). Thus, further research in innovative technologies aiming 
at mitigating the impact of protein oxidation in meat is needed to 
improve both meat quality and subsequent usage. 

4.2. Meat tenderization using exogenous proteases 

Traditionally, use of certain plant parts (leaves, stems, seeds, latex, 

fruits, roots, and pulps), such as Artocarpus integer, pineapple, papaya, 
ginger, figs and others (Table 2), to tenderize meat has been considered 
important. Although the modern meat industry has been able to reduce 
variability in meat tenderness, by implementing accelerated condition-
ing and aging and use of electrical stimulation, inherent variation in 
meat tenderness, means that less than 10% of the carcass meat is suitable 
for grilling (Polkinghorne et al., 2008b). Proteases which break-down 
myofibrillar proteins can be endogenous (eg. calpains and cathepsins) 
and exert their effects in the animal and during aging (see Warner et al., 
2021 for review) or exogenous, with application to the meat postmor-
tem. Many of the meat cuts obtained from slaughtered animals could 
benefit from the use of exogenous enzymes to reduce the toughness and 
add-value (Bekhit, Hopkins, Geesink, Bekhit, & Franks, 2014). 

Proteases can be classified as acidic, neutral, or alkaline proteases on 
the basis of optimal pH for their activity, and also as animal, plant, 
bacterial, fungal, yeast, or marine proteases on the basis of their source 
(Table 2); or as endopeptidases and exopeptidases on the basis of their 
cleavage position. Comprehensive accounts of protease classification, 
characteristics, regulation, and the level of investigation in meat 
research can be found in Bekhit, Hopkins, et al. (2014), Bekhit, Carne, 
Ryder, Ha, & Kong (2017) and Tantamacharik, Carne, Agyei, Birch, and 
Bekhit (2018). Therefore, the following section will provide information 
on recent trends for the use of exogenous proteases to tenderize meat 
and make general comments in relation to the potential commercial 
application. 

4.2.1. Plant proteases 
Proteases are widely distributed in plants (Tantamacharik et al., 

2018) but most research on meat tenderization has focused on a few 
cysteine proteases such as papain (papaya latex), bromelain (pineapple 
stem), ficin (figs), actinidin (kiwifruit) and zingibain (ginger rhizome). 

Papain and bromelain lack substrate specificity towards meat pro-
teins and the extensive and non-selective hydrolysis of myofibrillar and 
connective tissue protein results in mushy texture and generation of ‘off’ 
sensory notes such as ‘grainy’ texture and ‘bitter’ flavour (Bekhit, 
Hopkins, et al., 2014). The process needs to be strictly regulated to 
achieve the right level of tenderness but can be used to generate tender 
meat (Barekat & Soltanizadeh, 2018; Ma et al., 2019) and beef products 
for older consumers (Botinestean et al., 2018). Actinidin has attracted 
much interest (Zhang, Sun, Liu, Li, & Jiang, 2017; Zhu, Kaur, Staincliffe, 
& Boland, 2018; Bekhit, Ha, Carne, Hopkins, & Geesink, 2018; Bekhit 
et al., 2018; Gong, Morton, Bhat, Mason, & Bekhit, 2019), as has zin-
gibain (Naqvi et al., 2021) due to the mild and effective tenderization 
(Han, Morton, Bekhit, & Sedcole, 2009). A very effective tenderization 
process involved an actinidin-containing preparation which was infused 
pre-rigor and led to early activation of Calpain-2 and very tender meat at 
5 hrs postmortem (Han et al., 2009). Less known plant proteases with 
potential tenderizing effects include extracts of asparagus (Ha, Bekhit, 
Carne, & Hopkins, 2013; Yonezawa, Kaneda, & Uchikoba, 1998), Sar-
codon aspratus (mushroom species; Kim, Lee, & Ryu, 2015), crude 
mango peel (Dhital & Vangnai, 2019) and Spondias cytherea roots (plum 
tree species; Ahmad et al., 2019). 

Plant proteases have been extensively studied, however according to 
the best knowledge of the authors, these enzymes are not used in meat 
products commercially. This is likely due to various issues related to 
formulation, stability and control of the enzymes post-treatment which 
are discussed in full detail in Bekhit, Suwandy, Carne, Ali, and Wang 
(2017) and need to be addressed in order for future uptake in the meat 
industry. Many of these issues are related to the fact that commercial 
protease preparations contain multiple complex proteins and proteases 
(Ha et al., 2013; Ha, Bekhit, Carne, & Hopkins, 2012) that exhibit var-
iable hydrolytic activities and can lead to over-tenderization and pro-
duction of ‘off’ sensory notes, as mentioned above for papain and 
bromelain. The variability in purity of the proteases in commercial 
preparations would result in different tenderization outcomes. Another 
issue with plant protease extracts is that they can carry some flavor of 
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Table 2 
Plant, microbial and animal proteases potentially useful in meat tenderization. Derived from Tantamacharik et al. 
(2018). 
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their own that may be acceptable to some and unacceptable to others, 
such as occurs with ginger extracts containing zingibain. 

4.2.2. Proteases from bacteria and fungi 
Proteases from bacterial and fungal sources have been extensively 

used in food and biotechnological applications. The microbial-derived 
proteases have several advantages compared to plant-derived pro-
teases. The microbes can be cultured relatively quickly under strict 
conditions that allow more control over the production of the proteases. 
The expression and activity of the proteases can be manipulated using 
modified production conditions or cloning. The cloning of an aspartic 
protease gene (RmproA) in Rhizomucor miehei CAU432 fungi is an 
example which resulted in a protease with the same efficacy as papain 
for tenderizing pork (Sun et al., 2018). 

Microbial-derived proteases are commercially available from non- 
pathogenic sources and many have been approved by regulatory au-
thorities. Many of these microbial-derived proteases have higher speci-
ficity and are easier to control than plant proteases (Ashie, Sorensen, & 
Nielsen, 2002). However, many consumers are uncomfortable with the 
concept of bacterial or fungal additives to food products. A good strategy 
to overcome this negative perception is to target probiotic bacteria as 
sources of effective proteases, which could be used for the dual function 
of gut health, and meat tenderization (Chanalia, Gandhi, Attri, & 
Dhanda, 2018). 

4.2.3. General comments 
It is difficult to achieve controlled proteolysis with broad substrate 

specificity proteases (Schaller, 2004) and this has resulted in undesir-
able over-tenderized product. This may not be a problem if the final 
product is designed for infants, seniors or patients who may find 
chewing difficult. Mild tenderizing proteases (microbial-derived pro-
teases, zingibain and actinidin) are probably easier to control and more 
available compared to plant proteases which are often limited by 
geographical or production issues. Pre-rigor infusion has not been a 
commercial reality until recently. The development of Rinse & Chill® 
technology makes the application of compounds such as actinidin to pre- 
rigor carcass meat a viable option. Recent studies have combined pro-
teases and emerging technologies, such as ultrasound (Barekat & Sol-
tanizadeh, 2018) and high pressure processing (Ma et al., 2019), and 
show promise for new strategies to improve distribution within the 
muscle, facilitate better interaction between proteases and ultrastruc-
tural proteins, and hence allow greater control of tenderization. 

4.3. Freezing/thawing effects on tenderness 

The freezing of meat produces ice crystals, the size and location of 
which depend on freezing rate and temperature. Rahelić, Gawwad, and 
Puač (1985) showed that ice crystals formed in the extracellular space at 
slow freezing to -10◦C, intracellularly and extracellularly at -20◦C, and 
intracellularly at temperatures between -33◦C and -196◦C. In their ex-
periments, lower temperatures were accompanied by faster freezing 
rates. Ultrastructural studies on these frozen specimens (Rahelić et al., 
1985) revealed lateral separation of muscle fibers at -10 and -20◦C and 
disruption of intracellular structures below -33◦C. Dobraszczy, Atkins, 
Jeronimidis, and Purslow (1987) demonstrated that the mechanical 
properties of beef semitendinosus muscle frozen to -21◦C and then aged at 
temperatures between -5◦C and -30◦C undergo various transitions, with 
a peak of work to fracture at temperatures between -10 and -15◦C, 
indicating that the varying location of ice crystals and the plasticity due 
to unfrozen water affect the properties of the frozen material. Thawing 
rates and methodologies (ambient temperature, chilled temperature, 
ohmic heating, acoustic, high-pressure, microwave, etc.) can also vary 
greatly and slow rates of thawing produce higher drip losses (Akhtar, 
Khan, & Faiz, 2013), with the possibility of reformation of larger ice 
crystals in slow thawing. Zhang and Ertbjerg (2018) interpreted the 
reduction in water-holding of frozen versus non-frozen pork loin as 

evidence of myofibrillar protein denaturation during the freeze/thaw 
process. 

Locker and Daines (1973) found small increments of tenderization in 
beef sternomandibularis after repeated freeze-thaw cycles. Winger and 
Fennema (1976) used the same muscle to demonstrate that reductions in 
shear force with aging occurred more rapidly in frozen samples than 
non-frozen samples. Crouse and Koohmaraie (1990) found that meat 
aged after freezing had lower cooked shear force values than meat 
frozen after the same aging times. While Hergenreder et al. (2013) re-
ported decreases in WBSF in beef longissimus but not gluteus medius due 
to freezing, no significant effects of freezing on sensory tenderness were 
found. Similarly, Lagerstedt and Johansson (2008) concluded that 
freezing and aging decreased peak shear force values, but sensory pan-
elists perceived meat chilled for a similar aging period to be more ten-
der, possibly due to a higher perception of juiciness in the chilled versus 
frozen samples. Grayson, King, Shackelford, Koohmaraie, and Wheeler 
(2014) concluded that freezing, or freezing and aging, does decrease 
slice shear force measures of toughness by 10-20% in beef longissimus, 
although the effect is less pronounced for beef semitendinosus, with an 
increase in proteolysis (as measured by desmin degradation) matching 
the decrease in shear force. In addition, Kim, Kim, Seo, Setyabrata, and 
Kim (2018), examined pork loins subjected to different ageing/freezing/ 
thawing regimes and reported that ageing prior to a fast freeze/thaw 
cycle was an effective method to improve tenderness. Thus, some 
structural damage caused by ice crystals in frozen meat followed by 
enhanced proteolysis after thawing does seem to weaken the muscle 
structure, although the effects can vary greatly with freezing rate, 
temperature, thawing rate and method, and also between muscles and 
breeds (Aroeira et al., 2016). However, the effects on sensory tenderness 
may be confounded by decreased perception of juiciness. Emerging 
technologies to assist with freezing and thawing, including the use of 
high pressure, electrical and magnetic fields, ultrasound, microwave, 
and antifreeze protein, have shown promising results (Cheng, Sun, Zhu, 
& Zhang, 2017; Zhan, Sun, Zhu, & Wang, 2018). By utilizing these 
physical factors during the freezing and thawing processes, ice crystal 
formation, migration and distribution in meat are manipulated to 
minimize the impact on water holding capacity and texture. Our un-
derstanding of the effect of these technologies on the tenderness of 
frozen/thawed meat is limited, compared to other supply chain factors, 
thus further research is required. Such research should be targeted to-
wards intrinsic meat factors that are known to influence the rate of 
freezing and thawing, e.g. species, muscles, intramuscular fat, post-
mortem biochemistry and ageing status of the meat. 

4.4. Selected technologies for tenderization 

In recent years, much interest has been paid to developing more 
efficient and sustainable technologies to tenderize meat, or accelerate 
the tenderization process (Warner et al., 2017). The potential use of 
pulsed electric fields, ultrasound, muscle stretching techniques (Ten-
derstretch, Smartstretch™ and PiVac™, see Warner et al., 2017 for re-
view) and pressure-inducing techniques (high pressure processing, 
hydrodynamic and shockwave) have been investigated for their poten-
tial meat tenderizing effects. Comprehensive reviews on the topics that 
describe principles, mode of action, effect on meat quality and future 
prospects of the various technologies are available (Alarcon-Rojo, 
Carrillo-Lopez, Reyes-Villagrana, Huerta-Jiménez, & Garcia-Galicia, 
2019; Bhat, Morton, Mason, & Bekhit, 2018; Bhat, Morton, Mason, & 
Bekhit, 2019a; Troy, Ojha, & J. P., & Tiwari, B., K., 2016; Warner et al., 
2017). A meta-analysis of literature on emerging technologies demon-
strated that, across a number of studies, HPP was the most effective 
technology to reduce the WBSF of meat (Warner et al., 2017). The only 
cautionary note was that many of the technologies only had a limited 
number of studies, whereas HPP technology had 23 studies, compared 
to, for example, PEF, which had only 12 studies. 
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4.4.1. High pressure – hydrostatic and hydrodynamic 
A recent meta-analysis of 23 experiments and 216 treatments on high 

pressure processing (HPP) applied to beef, sheepmeat, pork and chicken 
showed that the maximum tenderization occurred using 68-80 oC at 
100-150 MPa, and significant tenderization also occurred under HPP 
conditions of 35-60 oC and 100-150 MPa (Warner et al., 2017). Recent 
studies have focused on exploring the mechanism of action for the 
tenderizing effect of HPP (high hydrostatic pressure) (Morton et al., 
2017; Morton, Lee, Pearson, & Bickerstaffe, 2018; Zhang, Pan, & Wu, 
2018b; Zhang et al., 2018). Beef hot-boned within 1 h of slaughter, at a 
temperature of 30-35◦C, treated with HPP (175 MPa, for 2 min) and 
chilled to -1◦C for 1 day, resulted in 60% and 43% lower WBSF in 
longissimus thoracis and gluteus medius, respectively and better sensory 
scores compared to controls (Morton et al., 2017). These results were 
similar to the effect of chiller aging for 28 days. The tenderizing effect of 
HPP was subsequently confirmed using the same HPP conditions (175 
MPa, for 2 min) for longissimus thoracis samples from prime beef and 
bulls and resulted in 63% and 70% lower WBSF, respectively, and better 
sensory scores (Morton et al., 2018). Electron microscopy revealed that 
HPP had caused significant disruption to the sarcomere structure and led 
to a loss of network integrity, but this did not appear to be related to 
proteolysis, as HPP resulted in less activation of Calpain-1, shorter sar-
comeres and lower myofibrillar fragmentation (MFI) (Morton et al., 
2018). This suggested a lack of involvement of Calpain-1 in the observed 
tenderizing effect of HPP. Contrary to these findings, Zhang, Pan, & Wu 
(2018b) reported that pork subjected to HPP treatment (range 0-400 
MPa, for 10 min at 20◦C and kept at 4◦C before treatment) within 2 h 
of slaughter showed higher MFI, an indication of increased proteolysis. 
HPP treatment of Calpain-2 and Calpain-1 and calpastatin in saline 
resulted in a small decrease in the Calpain-1 activity and a substantial 
decrease in calpastatin activity, suggesting a role for the calpain system 
in pork tenderization by HPP (Zhang, Pan, & Wu, 2018b) which is in 
contrast to previous findings. Furthermore, the authors reported that 
HPP prevented rigor development and thus it appears that mechanical 
and biochemical factors may explain the tenderizing effects of HPP of 
pork. In both studies, it is likely that exposing bone-less meat samples to 
low temperatures during either sampling or post-treatment storage 
would induce cold shortening, which may have been more severe in beef 
stored at -1◦C compared to pork that was stored at 4◦C. Assuming 
sarcomere shortening occurred (due to cold-induced shortening), this 
would potentially hinder access of calpain to its substrates (Weaver, 
Bowker, & Gerrard, 2008) in beefand thus may explain the low prote-
olysis observed in the samples. Although Wheeler and Koohmaraie 
(1999) did not find any evidence for this in sheep longissimus. The 
important information from these studies is that HPP is capable of 
tenderizing meat, either mechanically or through other systems, without 
the involvement of calpains. A 30% to 80% reduction in WBSF has been 
found with the application of HPP to post-rigor meat, but this required a 
processing temperature above 50-60◦C (Warner et al., 2017). 

Compared to high hydrostatic pressure (high pressure processing) for 
which there are numerous references, there are very few references on 
the application of high hydrodynamic pressure (shockwave) for meat 
tenderization (see review by Warner et al., 2017 for the references for 
both high hydrostatic and hydrodynamic pressure). Chian et al. (2019) 
reported that shockwave treatment caused an 11% reduction in the 
WBSF of beef brisket. Earlier research on shockwaves by Bolumar, 
Bindrich, Toepfl, Toldrá, and Heinz (2014) reported 18% reduction in 
the WBSF of beef loin steaks and reported it was caused by physical 
disruption. 

4.4.2. Ultrasonication 
High intensity ultrasound (HIU) at frequencies typically between 20- 

40 KHz produces cavitation in the intramuscular fluid when applied to 
raw meat, and this is thought to have two possible effects: (i) direct 
disruption of myofibrillar, cell membrane and connective tissue struc-
tures, and (ii) potentiation of proteolysis through the release of enzymes 

and effects on calcium release. These mechanisms have been reviewed at 
length by Alarcon-Rojo and colleagues (Alarcon-Rojo et al., 2019; 
Alarcon-Rojo, Janacua, Rodriguez, Paniwnyk, & Mason, 2015). Chang, 
Wang, Tang, and Zhou (2015) reported that HIU disrupted intramus-
cular connective tissue, reducing the thickness of perimysium and dis-
rupting endomysium. However, the study did not reveal the length of 
time of storage at 4◦C of specimens between application of ultrasound 
and the time of testing. Similarly, Chang, Xu, Zhou, Li, and Huang 
(2012) reported that HIU weakened the thermal denaturation of 
collagen in meat, but not its heat-solubility. However, their measure-
ments of thermal stability were taken after storage of meat samples at 
4◦C for up to one week after ultrasonication, so that accelerated prote-
olysis was a possible contributor and the reported effects cannot be 
ascribed to connective tissue disruption alone. Other studies focus on 
ultrasonic disruption of myofibrillar structures. (Kang et al., 2017) and 
Stadnik, Dolatowski, and Baranowska (2008) reported disrupted Z-discs 
and swollen myofibrils after HIU treatment, but both of these studies 
also stress the acceleration of proteolysis during the aging process. As 
Alarcon-Rojo et al. (2019) pointed out, the numerous studies on the 
effects of ultrasound on meat tenderness are difficult to interpret due to 
the wide range of ultrasonic intensities and treatment times employed, 
as well as the variable times between ultrasonic treatment and mea-
surement of biochemical, structural and tenderness parameters, How-
ever, a mix of physical weakening of muscle structures and accelerated 
proteolysis by release of cathepsins and calcium ions that activate cal-
pains was likely (Alarcon-Rojo et al., 2019). 

4.4.3. Pulsed electric field 
Pulsed electric field (PEF) technology has been the subject of 

considerable recent research activity and has been critically reviewed by 
Bekhit, Carne, et al. (2017) and Bhat et al. (2019a). The first study to 
document a tenderizing effect of PEF in beef (Bekhit et al., 2014) re-
ported an average of 19% reduction in WBSF relative to untreated 
samples. A subsequent study (Bhat et al., 2019a) documented the 
tenderizing effect but highlighted it was dependent on the muscle type 
and the status of the meat (pre- or post-rigor). A major concern for PEF 
use in pre-rigor meat is the heat generation that could lead to a cooking 
and toughening effect if high PEF intensity is used. Recent studies 
demonstrated PEF led to early activation of Calpain-2 and increased the 
proteolysis of desmin and troponin-T (Bhat, Morton, Mason, & Bekhit, 
2019b, 2019c). However, the tenderizing effect of PEF is much lower 
compared with that achieved by HPP (Warner et al., 2017). Interest-
ingly, PEF treatment has been shown to affect connective tissue and 
cause a reduction in the denaturation temperature of connective tissue 
and increased collagen solubilization at 60◦C and 70◦C (Alahakoon, 
Oey, Silcock, & Bremer, 2017). Although PEF has promise in tenderizing 
meat, there are several obstacles that need to be addressed. According to 
Bekhit, Carne, et al. (2017), heat generation during the treatment of 
fresh meat could negatively affect important quality attributes such as 
color, color stability, and water holding capacity. Commercial applica-
tion will need a balance between the effective use of PEF and excessive 
heating. Furthermore, all reported studies have used isolated muscle 
tissue and no research on intact composite samples (containing muscle, 
connective tissue, fat and bone) has been reported. It is conceivable that 
non-uniform and uneven treatment distribution in non-homogenous 
material, such as meat, would occur and the effectiveness of the treat-
ment would vary with the composition of the sample. The upscaling of 
PEF technology to suit meat applications is another technological hurdle 
required for commercial use of the technology. Most PEF experiments 
have used parallel plates less than 10 cm apart and small portions of 
meat. Processing of larger cuts would require higher voltages to generate 
sufficient electric field strength, with increased risk of heating. 

4.4.4. Stretching and summary 
Stretching is another technology designed to improve meat tender-

ness. Stretching can be applied at the carcass level (tenderstretch and 
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tendercut) or at the primal/cut level (PiVac® and Smartstretch™). The 
basic principle behind stretching of meat is to minimise sarcomere 
shortening during rigor mortis. Several reviews are available with good 
summaries of different stretching methods and usage (Bekhit, Hopkins, 
et al., 2014; Sørheim & Hildrum, 2002; Warner et al., 2017). While 
tenderstretch has been more widely adopted by selected meat processors 
compared to other stretching methods, most likely due to its easier 
adoptability, some of the issues commonly raised by processors include 
chiller space limitation, boning efficiency, primal shape changes and 
yield (Condon, 2019). Tenderstretch has been incorporated in Meat 
Standards Australia grading scheme to improve eating quality of beef 
and sheepmeat. 

In summary, there are a range of postmortem treatments of meat that 
impact tenderness either through direct disruption of myofibrillar 
structure or accelerated proteolysis, or a combination of both. Fig. 3 
shows an estimation from the meta-analysis of Warner et al. (2017) of 
the relative benefits of a subset of these techniques, compared to treat-
ments administered to live animals, in terms of changes to cooked meat 
tenderness. 

4.5. Changes in tenderness during cooking 

Cooking is the final step prior to consumption and has a significant 
effect on sensory qualities. This section examines the impact of cooking 
on tenderness, with a focus on changes in protein conformation and 
degradation. Extensive research has been conducted on heat-induced 
denaturation of major meat proteins. These changes in the secondary 
structure can be observed by differential scanning calorimetry (DSC) 
and spectroscopic methods, such as Raman and Fourier Transform 
spectroscopy. DSC thermograms of meat consist of three or more major 
peaks, also known as transition temperatures, which are usually asso-
ciated with the denaturation of major proteins and changes in meat. 
When conducting DSC, care should be taken when interpreting transi-
tion temperatures of major meat proteins that overlap and the process of 
denaturation should be regarded as a continuous process (Vaskoska 
et al., 2021). Denaturation of actin and myosin has been associated with 
tougher meat, and collagen denaturation has been linked to a decrease 
in firmness (Martens, Stabursvik, & Martens, 1982). The extent of 
collagen denaturation is dependent on heating temperature and heating 
rate. Lattore, Velazquez, and Purslow (2018) showed that the temper-
ature, at which collagen denatured (transition temperature), increased 
with increasing heating rate (Fig. 4). About 5 % denaturation of collagen 

can be achieved through long-time, low-temperature (LTLT) cooking 
method in beef cooked at 60◦C for 24 hours (Latorre, Palacio, Velázquez, 
& Purslow, 2019; Purslow, 2018). Similarly, increased tenderness in 
pork can be achieved with LTLT cooking which is related to solubilized 
collagen and reduced perimysial thickness (Li et al., 2019). Spectro-
scopic methods have been used to link meat tenderness to specific 
changes in the secondary conformation of proteins (Beattie, Bell, Borg-
gaard, & Moss, 2008; Beattie, Bell, Farmer, Moss, & Patterson, 2004; 
Schmidt, Scheier, & Hopkins, 2013). While α- helices in muscle protein 
conformation are associated with greater toughness in bovine semite-
ndinosus and ovine longissimus (Beattie et al., 2004; Schmidt et al., 2013), 
an increase in aggregated β-sheets has also been related to greater WBSF 
in porcine longissimus (Beattie et al., 2008). It is noteworthy that changes 
in content of α- helix and aggregated β- sheet are continuous with an 
increase in temperature. On the other hand, the level of tenderness 
fluctuates along the course of cooking as shown in Christensen, Purslow, 
and Larsen (2000) and Vaskoska, Ha, Naqvi, White, and Warner (2020). 
Thus, protein conformational change alone cannot fully explain the 
tenderness of cooked meat. 

Another possible factor contributing to tenderness of meat is prote-
olysis during cooking. The role of calpains in tenderness of cooked meat 
remains largely unreported, most likely due to calpain inactivation at 
high temperature. However, desmin (whose degradation by Calpain-1 is 
a well-established marker of meat tenderization during aging) has been 
shown to be further degraded during cooking of porcine longissimus 
thoracis et lumborum (Ertbjerg, Christiansen, Pedersen, & Kristensen, 
2012, suggesting involvement of cathepsins in proteolysis occurring 
during cooking of meat. Cathepsins are endogenous carboxyl proteases 
in muscle which have generally been considered to have no contribu-
tion, or a minor contribution, to tenderization during aging (Warner 
et al., 2021). However, recent studies have suggested cathepsins remain 
active during cooking, with increased activity between 53 and 63 ◦C 
(Christensen, Ertbjerg, Aaslyng, & Christensen, 2011). Injecting pre- 
rigor lamb with aspartyl protease inhibitor pepstatin, and aspartic pro-
tease inhibitor 1,2-epoxy-3-nitrophenoxypropane (EPNP), resulted in 
increases in WBSF (from 57 to 64 N, and from 60 to 80 N, respectively) 
of lamb longissimus cooked at 60 ◦C (King & Harris, 1982a, 1982b). 
Similarly, the activity of cathepsins B+L was negatively correlated (r 
=-0.50) with the WBSF of cooked porcine longissimus (Christensen et al., 
2011). In addition, Vaskoska et al. (2021) showed that inhibition of 
cathepsins during heating of muscle fibre fragments causes a change in 
longitudinal and transverse shrinkage, both of which were related to 

Fig. 3. Results of meta-analyses of Warner et al. (2017) pre-
dicting the change in peak shear force (N) in response to 
various treatments. Positive changes (green bars) are predicted 
reductions in shear force, whereas negative changes (red bars) 
are predicted increases. Pre-rigor treatments of Smartstretch , 
post-rigor pulsed electric field (PEF-post-rigor), electrical 
shock wave (SW-electrical), ultrasound and high-pressure 
processing (HPP) are compared to predicted effects of appli-
cations of ractopamine, zilpaterol and hormonal growth pro-
motants (HGP) to beef cattle. The mean effect is shown and the 
vertical bar is the least significant difference (2 x SED). 
Reproduced from Warner et al. (2017) with the permission of 
Elsevier Ltd.   
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meat tenderness. These studies together indicate that cathepsins may 
contribute to tenderness of meat, particularly when cooked under con-
ditions that are conducive to their proteolytic activity, e.g. LTLT 
cooking. 

5. Summary and further research 

The importance of tenderness to the sustainability of the meat in-
dustry is recognized because it has a strong influence on the consumers 
acceptance of the quality of the meat they purchase, thus determining 
repeat purchase. There have been many advances in knowledge since 
the 1970’s, on the factors affecting meat tenderness from a structural, 
muscle protein, biochemical and technological point of view. 

The value of identifying biomarkers for prediction of meat tender-
ness from proteomic studies at this stage appears to be mainly in 
expanding our understanding of the tenderization process. This is partly 
because the complex processes associated with tenderisation postmor-
tem rely on many factors in the supply chain. For this reason, some have 
predicted that single protein biomarkers will not be likely to accurately 
or reliably predict meat tenderness (Starkey, Geesink, Collins, Hutton 
Oddy, & Hopkins, 2016) whereas we suggest potential biomarkers still 
need extensive validation across species, carcasses and muscles. In 
addition, the role of collagen in tenderness has been overlooked in 
proteomic studies, likely because it is very challenging to isolate and 
purify (Warner et al., 2021). 

Collagen has not only been overlooked in recent proteomic studies, 
but also there is a general lack of research on the contribution of 
collagen to meat tenderness. This is particularly in light of the data 
showing the postmortem degradation of collagen (Sylvestre, Balcerzak, 
Feidt, Baracos, & Bellut, 2002), the possible role of Vitamins C and E in 
collagen synthesis (Archile-Contreras et al., 2011) and potential for 
manipulation of the pools of heat-labile collagen in the animal and 
postmortem (Purslow, 2014, 2018). Hence future research on tender-
ness should include a focus on the changes in collagen in the animal, 
postmortem during ageing and also during cooking. This will assist in 
developing strategies to reduce cooked meat toughness of some animals 
and muscles. 

Many hypothesis-driven studies have been conducted on effects of 
genetic, nutritional and environmental and molecular factors influ-
encing meat tenderization whereas proteomic studies have focused on 
generating post-hoc hypotheses for the role of proteins in meat quality 
(Purslow, Gagaoua, & Warner, 2021. These molecular studies have been 
useful in identifying the important role of energy metabolism and new 
insights of apoptosis and proteases other than calpain in protein 
breakdown postmortem. Recent research has highlighted the 

importance of considering the interaction between different proteases 
including between caspases, cathepsins and the calpain system which 
seems to be multifaceted and complex in postmortem muscle. Recent 
data shows that proteolysis, which is initiated in the meat during ageing, 
continues during heating and cooking (Vaskoska, Ha, Ong, Kearney, 
et al., 2021), which challenges some of the traditional thinking that 
proteolysis ceases once cooking occurs. Further research on the inter-
action between the protease systems in animals, during processing and 
storage and also during cooking warrants further research. 

The application of processing technologies and enzymes for 
advanced meat tenderization has been ongoing. Critically, evidence for 
substantial tenderization of very tough muscles has had most success 
with high hydrostatic pressure processing and also with plant-derived 
enzymes such as ginger and kiwifruit. Importantly, these technologies 
and enzymes are far more effective in tenderizing than any toughness 
arising to hormonal growth promotants, genetics or nutrition of the 
animal. The research on processing technologies and enzymes require 
further validation on muscles other than the longissimus and also in a 
wider range of carcasses and species. In addition, investigation of the 
molecular and biological mechanisms underpinning these technologies 
and enzymes will enable advances in understanding in addition to in-
dustry application. 

The research conducted on meat tenderness has allowed eating 
quality assurance programs to be developed around the world and in 
some countries, this has resulted in premium prices for ‘quality assured 
tenderness’. Future research should continue to advance the field to 
enable innovations in the meat industry. 

Declaration of Competing Interest 

The authors declare that they have no conflict of interest. 

References 

Aberle, E. D., Reeves, E. S., Judge, M. D., Hunsley, R. E., & Perry, T. W. (1981). 
Palatability and muscle characteristics of cattle with controlled weight gain: Time on 
a high energy diet. Journal of Animal Science, 52, 757–763. https://doi.org/10.2527/ 
jas1981.524757x 

Agbeniga, B., & Webb, E. C. (2018). Influence of carcass weight on meat quality of 
commercial feedlot steers with similar feedlot, slaughter and post-mortem 
management. Food Research International, 105, 793–800. https://doi.org/10.1016/j. 
foodres.2017.10.073 

Ahmad, M. N., Mat Noh, N. A., Abdullah, E. N., Yarmo, M. A., Mat Piah, M. B., & Ku 
Bulat, K. H. (2019). Optimization of a protease extraction using a statistical approach 
for the production of an alternative meat tenderizer from Spondias cytherea roots. 
Journal of Food Processing and Preservation, 43(11), Article e14192. 

Akhtar, S., Khan, M. I., & Faiz, F. (2013). Effect of thawing on frozen meat quality: A 
comprehensive review. Pakistan Journal of Food Science, 23(4), 198–211. 

Fig. 4. Differential scanning calorimetry thermograms of a) perimysium from pectoralis profundus and b) perimysium from semitendinosus at variable heating rates (1, 
2, 5, 10, 15 and 20 K/min), reproduced from Latorre et al. (2018) 

R.D. Warner et al.                                                                                                                                                                                                                              

https://doi.org/10.2527/jas1981.524757x
https://doi.org/10.2527/jas1981.524757x
https://doi.org/10.1016/j.foodres.2017.10.073
https://doi.org/10.1016/j.foodres.2017.10.073
http://refhub.elsevier.com/S0309-1740(21)00233-3/rf0015
http://refhub.elsevier.com/S0309-1740(21)00233-3/rf0015
http://refhub.elsevier.com/S0309-1740(21)00233-3/rf0015
http://refhub.elsevier.com/S0309-1740(21)00233-3/rf0015
http://refhub.elsevier.com/S0309-1740(21)00233-3/rf0020
http://refhub.elsevier.com/S0309-1740(21)00233-3/rf0020


Meat Science 185 (2022) 108657

17

Alahakoon, A., Oey, I., Silcock, P., & Bremer, P. (2017). Understanding the effect of 
pulsed electric fields on thermostability of connective tissue isolated from beef 
pectoralis muscle using a model system. Food Research International, 100, 261–267. 

Alarcon-Rojo, A. D., Carrillo-Lopez, L. M., Reyes-Villagrana, R., Huerta-Jiménez, M., & 
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