5,218 research outputs found
Egyptâs dispersed heritage: Multi-directional storytelling through comic art
This paper responds to a need to address the colonial history of collections of Egyptian archaeology and to find new ways in which Egyptian audiences can assume greater agency in such a process. The âEgyptâs Dispersed Heritageâ project presents a model of engagement whereby foreign museum collections become the inspiration for Egyptians to express their own feelings about the removal of their heritage abroad using idioms and traditional storytelling of cultural relevance to them. A series of online comics confronting contentious heritage issues, including the display of mummified human remains, eugenics, looting and destruction, is discussed. It is argued that this approach is not only more relatable for Egyptian communities, but moreover provides space for the development of grass-roots critique of heritage practices, both in the UK and in Egypt. Museums have a responsibility to take on board these critiques, curating not just objects but relationships forged amongst them in historical and contemporary society
Determination of protein binding affinities within hydrogel-based molecularly imprinted polymers (HydroMIPs)
Hydrogel-based molecularly imprinted polymers (HydroMIPs) were prepared for several proteins (haemoglobin, myoglobin and catalase) using a family of acrylamide-based monomers. Protein aïŹnity towards the HydroMIPs was investigated under equilibrium conditions and over a range of concentrations using specific binding with Hill slope saturation profiles. We report HydroMIP binding aïŹnities, in terms of equilibrium dissociation constants (Kd) within the micro-molar range (25 ± 4 mM, 44 ± 3 mM, 17 ± 2 mM for haemoglobin, myoglobin and catalase respectively within a polyacrylamide-based MIP). The extent of non-specific binding or cross-selectivity for non-target proteins has also been assessed. It is concluded that both selectivity and aïŹnity for both cognate and non-cognate proteins towards the MIPs were dependent on the concentration and the complementarity of their structures and size. This is tentatively attributed to the formation of protein complexes during both the polymerisation and rebinding stages at high protein concentrations. We have used atomic force spectroscopy to characterize molecular interactions in the MIP cavities using protein-modified AFM tips. Attractive and repulsive force curves were obtained for the MIP and NIP (non-imprinted polymer) surfaces (under protein loaded or unloaded states). Our force data suggest that we have produced selective cavities for the template protein in the MIPs and we have been able to quantify the extent of non-specific protein binding on, for example, a non-imprinted polymer (NIP) control surface
Selective extraction of proteins and other macromolecules from biological samples using molecular imprinted polymers
The accurate determination of intact macromolecules in biological samples, such as blood, plasma, serum, urine, tissue and feces is a challenging problem. The increased interest in macromolecules both as candidate drugs and as biomarkers for diagnostic purposes means that new method development approaches are needed. This review charts developments in the use of molecularly imprinted polymers first for small-molecular-mass compounds then for proteins and other macromolecules.
Examples of the development of molecularly imprinted polymers for macromolecules are highlighted. The two main application areas to date are sensors and separation science, particularly SPE. Examples include peptides and polypeptides, lysozyme,
hemoglobin, ovalbumin, bovine serum albumin and viruses
Direct Extraction of QCD Lambda MS-bar from e+e- Jet Observables
We directly fit the QCD dimensional transmutation parameter, Lambda MS-bar,
to experimental data on e+e- jet observables, making use of next-to-leading
order (NLO) perturbative calculations. In this procedure there is no need to
mention, let alone to arbitrarily vary, the unphysical renormalisation scale
mu, and one avoids the spurious and meaningless ``theoretical error''
associated with standard alpha_s determinations. PETRA, SLD, and LEP data are
considered in the analysis. An attempt is made to estimate the importance of
uncalculated next-NLO and higher order perturbative corrections, and power
corrections, by studying the scatter in the values of Lambda MS-bar obtained
for different observables.Comment: 46 pages, 22 figure
Examining the potential for climate change mitigation from zero tillage
The benefits of reduced and zero-tillage systems have been presented as reducing runoff, enhancing water retention and preventing soil erosion. There is also general agreement that the practice can conserve and enhance soil organic carbon (C) levels to some extent. However, their applicability in mitigating climate change has been debated extensively, especially when the whole profile of C in the soil is considered, along with a reported risk of enhanced nitrous oxide (N2O) emissions. The current paper presents a meta-analysis of existing literature to ascertain the climate change mitigation opportunities offered by minimizing tillage operations. Research suggests zero tillage is effective in sequestering C in both soil surface and sub-soil layers in tropical and temperate conditions. The C sequestration rate in tropical soils can be about five times higher than in temperate soils. In tropical soils, C accumulation is generally correlated with the duration of tillage. Reduced N2O emissions under long-term zero tillage have been reported in the literature but significant variability exists in the N2O flux information. Long-term, location-specific studies are needed urgently to determine the precise role of zero tillage in driving N2O fluxes. Considering the wide variety of crops utilized in zero-tillage studies, for example maize, barley, soybean and winter wheat, only soybean has been reported to show an increase in yield with zero tillage (7·7% over 10 years). In several cases yield reductions have been recorded e.g. c. 1â8% over 10 years under winter wheat and barley, respectively, suggesting zero tillage does not bring appreciable changes in yield but that the difference between the two approaches may be small. A key question that remains to be answered is: are any potential reductions in yield acceptable in the quest to mitigate climate change, given the importance of global food security
Many-body physics of a quantum fluid of exciton-polaritons in a semiconductor microcavity
Some recent results concerning nonlinear optics in semiconductor
microcavities are reviewed from the point of view of the many-body physics of
an interacting photon gas. Analogies with systems of cold atoms at thermal
equilibrium are drawn, and the peculiar behaviours due to the non-equilibrium
regime pointed out. The richness of the predicted behaviours shows the
potentialities of optical systems for the study of the physics of quantum
fluids.Comment: Proceedings of QFS2006 conference to appear on JLT
The solid state forms of the sex hormone 17-ÎČ-estradiol
The crystal structure of the single component form of the primary female sex hormone, 17-ÎČ-estradiol (BES), is reported, solved from single crystals obtained by sublimation. The ZâČ = 2 P2â2â2â structure was computationally predicted as one of the thermodynamically plausible structures. It appears that the dehydration process for the very stable hemihydrate structure is a complex process, strongly affected by particle size and conditions. An experimental polymorph screen has produced six solid forms of BES, including novel acetonitrile and highly labile ethylene dichloride solvates, and reproduced previously reported methanol and propanol solvates. These have been characterized, as far as possible given the metastability relative to the hemihydrate (BES·0.5HâO), by single-crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), hot-stage microscopy and Fourier transform infrared spectroscopy (FT-IR), sorting out some of the confusion in the earlier literature
Optimal Renormalization Scale and Scheme for Exclusive Processes
We use the BLM method to fix the renormalization scale of the QCD coupling in
exclusive hadronic amplitudes such as the pion form factor and the
photon-to-pion transition form factor at large momentum transfer.
Renormalization-scheme-independent commensurate scale relations are established
which connect the hard scattering subprocess amplitudes that control exclusive
processes to other QCD observables such as the heavy quark potential and the
electron-positron annihilation cross section. The commensurate scale relation
connecting the heavy quark potential, as determined from lattice gauge theory,
to the photon-to-pion transition form factor is in excellent agreement with
data assuming that the pion distribution amplitude is
close to its asymptotic form . We also reproduce the
scaling and normalization of the data at large
momentum transfer. Because the renormalization scale is small, we argue that
the effective coupling is nearly constant, thus accounting for the nominal
scaling behavior of the data. However, the normalization of the space-like pion
form factor obtained from electroproduction experiments is
somewhat higher than that predicted by the corresponding commensurate scale
relation. This discrepancy may be due to systematic errors introduced by the
extrapolation of the electroproduction data to the
pion pole.Comment: 22 pages, Latex, 7 Latex figures. Several references added,
discussion of scale fixing revised for clarity. Final version to appear in
Phys. Rev.
MIP-based protein profiling: A method for interspecies discrimination
Due to recent public concern and interest in the authenticity and origin of meat, for example, the 2013 âhorsemeat scandalâ in the human food chain, novel sensor strategies for the discrimination between protein species are highly sought after. In this work, molecularly imprinted polymers (MIPs) are utilised for protein discrimination using electrochemical sensor and spectrophotometric techniques. MIP selectivity between two proteins of similar molecular weight (haemoglobin and serum albumin) were compared across three different species, namely pork, beef and human. Bulk MIPs resulted in Kd and Bmax values of 184±23 ”M, and 582 ”mol g-1 for BHb, 246.3±26 ”M, and 673 ”mol g-1 for HHb; 276±31 ”M, and 467 ”mol g-1 for PHb. With the aid of chemometrics, i.e. multivariate analysis and pattern recognition, distinctive protein profiles have been achieved for species discrimination in both spectrophotometric and electrochemical analysis experiments. MIP suitability and selectivity within complex matrices was also assessed using urine, human plasma and human serum. Pattern recognition MIP-based protein profiling demonstrated positive outputs yielding either a âbovineâ or ânot-bovineâ outcome (p = 0.0005) for biological samples spiked with/without bovine using respective bovine haemoglobin MIPs
- âŠ