8 research outputs found

    Investigating Exposure in Historical Scenarios: How People Behave in Fires, Earthquakes and Floods

    No full text
    In case of a disaster, the individuals’ safety depends on interactions between buildings vulnerability, related post-event damages and environmental conditions, human reaction to hazardous situations. Such interferences are critical in historical scenarios, because of particular environment features (e.g.: high buildings vulnerabilities; urban layout which is not designed to face actual emergency; individuals’ familiarity with architectural spaces, especially for tourists). Current risk assessment methods are limited to define exposure in terms of population’s presence in the scenario, but analysis should consider human behaviors in emergency, and especially during the evacuation process. Simulation models for evaluating evacuation motion have been recently developed to this aim, and so to evaluate the effectiveness of risk-reduction strategies. Nevertheless, models development and validation should be supported by experimental data to effectively represent the “human factor” in critical conditions. Hence, this paper combines previous literature results and real-life emergency analyses (performed on videotapes database from all over the World), by focusing on three main natural disasters recurrent for historical scenarios: fires, earthquakes and flood. Behavioral analyses try to define significant man-environment interactions from a qualitative and quantitative point of view. Results show how noticed behaviors can be distinguished in common ones and peculiar ones (referring to a specific disaster). Quantitative analyses referring to motion quantities evidence differences between the considered emergencies and underline the importance to adopt specific model inputs for each simulated disaste

    Measurement of inclusive spin structure functions of the deuteron - art. no. 0452XX

    No full text
    We report the results of a new measurement of spin structure functions of the deuteron in the region of moderate momentum transfer [Q(2)=0.27-1.3 (GeV/c)(2)] and final hadronic state mass in the nucleon resonance region (W=1.08-2.0 GeV). We scattered a 2.5 GeV polarized continuous electron beam at Jefferson Lab off a dynamically polarized cryogenic solid state target ((ND3)-N-15) and detected the scattered electrons with the CEBAF large acceptance spectrometer. From our data, we extract the longitudinal double spin asymmetry A(parallel toparallel to) and the spin structure function g(1)(d). Our data are generally in reasonable agreement with existing data from SLAC where they overlap, and they represent a substantial improvement in statistical precision. We compare our results with expectations for resonance asymmetries and extrapolated deep inelastic scaling results. Finally, we evaluate the first moment of the structure function g(1)(d) and study its approach to both the deep inelastic limit at large Q(2) and to the Gerasimov-Drell-Hearn sum rule at the real photon limit (Q(2)-->0). We find that the first moment varies rapidly in the Q(2) range of our experiment and crosses zero at Q(2) between 0.5 and 0.8 (GeV/c)(2), indicating the importance of the Delta resonance at these momentum transfers

    Epitheliome

    No full text
    corecore