5,440 research outputs found
Higgs compositeness in gauge theories --- Resymplecticisation, scale setting and topology
As part of an ongoing programme to study gauge theories as
potential realisations of composite Higgs models, we consider the case of
on the lattice, both as a pure gauge theory, and with two
Dirac fermion flavors in the fundamental representation. In order to compare
results between these two cases and maintain control of lattice artefacts, we
make use of the gradient flow to set the scale of the simulations. We present
some technical aspects of the simulations, including preliminary results for
the scale setting in the two cases and results for the topological charge
history.Comment: 8 pages, 6 figures; talk presented at the 35th International
Symposium on Lattice Field Theory, 18-24 June 2017, Granada, Spai
Input-to-state stability of infinite-dimensional control systems
We develop tools for investigation of input-to-state stability (ISS) of
infinite-dimensional control systems. We show that for certain classes of
admissible inputs the existence of an ISS-Lyapunov function implies the
input-to-state stability of a system. Then for the case of systems described by
abstract equations in Banach spaces we develop two methods of construction of
local and global ISS-Lyapunov functions. We prove a linearization principle
that allows a construction of a local ISS-Lyapunov function for a system which
linear approximation is ISS. In order to study interconnections of nonlinear
infinite-dimensional systems, we generalize the small-gain theorem to the case
of infinite-dimensional systems and provide a way to construct an ISS-Lyapunov
function for an entire interconnection, if ISS-Lyapunov functions for
subsystems are known and the small-gain condition is satisfied. We illustrate
the theory on examples of linear and semilinear reaction-diffusion equations.Comment: 33 page
Evidence for an evolutionary relationship between the large adaptor nucleoporin Nup192 and karyopherins
Nucleocytoplasmic transport is facilitated by nuclear pore complexes (NPCs), which are massive proteinaceous transport channels embedded in the nuclear envelope. Nup192 is a major component of an adaptor nucleoporin subcomplex proposed to link the NPC coat with the central transport channel. Here, we present the structure of the ∼110-kDa N-terminal domain (NTD) of Nup192 at 2.7-Å resolution. The structure reveals an open ring-shaped architecture composed of Huntingtin, EF3, PP2A, and TOR1 (HEAT) and Armadillo (ARM) repeats. A comparison of different conformations indicates that the NTD consists of two rigid halves connected by a flexible hinge. Unexpectedly, the two halves of the ring are structurally related to karyopherin-α (Kap-α) and β-karyopherin family members. Biochemically, we identify a conserved patch that binds an unstructured segment in Nup53 and show that a C-terminal tail region binds to a putative helical fragment in Nic96. The Nup53 segment that binds Nup192 is a classical nuclear localization-like sequence that interacts with Kap-α in a mutually exclusive and mechanistically distinct manner. The disruption of the Nup53 and Nic96 binding sites in vivo yields growth and mRNA export defects, revealing their critical role in proper NPC function. Surprisingly, both interactions are dispensable for NPC localization, suggesting that Nup192 possesses another nucleoporin interaction partner. These data indicate that the structured domains in the adaptor nucleoporin complex are held together by peptide interactions that resemble those found in karyopherin•cargo complexes and support the proposal that the adaptor nucleoporins arose from ancestral karyopherins
Cluster Analysis of the Ising Model and Universal Finite-Size Scaling
The recent progress in the study of finite-size scaling (FSS) properties of
the Ising model is briefly reviewed. We calculate the universal FSS functions
for the Binder parameter and the magnetization distribution function
for the Ising model on two-dimensional lattices with tilted
boundary conditions. We show that the FSS functions are universal for fixed
sets of the aspect ratio and the tilt parameter. We also study the
percolating properties of the Ising model, giving attention to the effects of
the aspect ratio of finite systems. We elucidate the origin of the complex
structure of for the system with large aspect ratio by the
multiple-percolating-cluster argument.Comment: 11 pages including 6 eps figures, elsart.sty, to appear in Physica
Simulation-based reachability analysis for nonlinear systems using componentwise contraction properties
A shortcoming of existing reachability approaches for nonlinear systems is
the poor scalability with the number of continuous state variables. To mitigate
this problem we present a simulation-based approach where we first sample a
number of trajectories of the system and next establish bounds on the
convergence or divergence between the samples and neighboring trajectories. We
compute these bounds using contraction theory and reduce the conservatism by
partitioning the state vector into several components and analyzing contraction
properties separately in each direction. Among other benefits this allows us to
analyze the effect of constant but uncertain parameters by treating them as
state variables and partitioning them into a separate direction. We next
present a numerical procedure to search for weighted norms that yield a
prescribed contraction rate, which can be incorporated in the reachability
algorithm to adjust the weights to minimize the growth of the reachable set
Large mass hierarchies from strongly-coupled dynamics
Besides the Higgs particle discovered in 2012, with mass 125 GeV, recent LHC data show tentative signals for new resonances in diboson as well as diphoton searches at high center-of-mass energies (2 TeV and 750 GeV, respectively). If these signals are confirmed (or other new resonances are discovered at the TeV scale), the large hierarchies between masses of new bosons require a dynamical explanation. Motivated by these tentative signals of new physics, we investigate the theoretical possibility that large hierarchies in the masses of glueballs could arise dynamically in new strongly-coupled gauge theories extending the standard model of particle physics. We study lattice data on non-Abelian gauge theories in the (near-)conformal regime as well as a simple toy model in the context of gauge/gravity dualities. We focus our attention on the ratio between the mass of the lightest spin-2 and spin-0 resonances, that for technical reasons is a particularly convenient and clean observable to study. For models in which (non-perturbative) large anomalous dimensions arise dynamically, we show indications that this mass ratio can be large, with . Moreover, our results suggest that might be related to universal properties of the IR fixed point. Our findings provide an interesting step towards understanding large mass ratios in the non-perturbative regime of quantum field theories with (near) IR conforma
Towards Simulating a Realistic Planetary Seismic Wavefield: The Contribution of the Megaregolith and Low-Velocity Waveguides
Lunar seismograms are distinctly different from their terrestrial counterparts. The Apollo lunar seismometers recorded moonquakes without distinct P- or S-wave arrivals; instead waves arrive as a diffuse coda that decays over several hours making the identification of body waves difficult. The unusual character of the lunar seismic wavefield is generally tied to properties of the megaregolith: it consists of highly fractured and broken crustal rock, the result of extensive bombardment of the Moon. The megaregolith extends several kilometers into the lunar crust, possibly into the mantle in some regions, and is covered by a thin coating of fine-scale dust. These materials possess very low seismic velocities that strongly scatter the seismic wavefield at high frequencies. Directly modeling the effects of the megaregolith to simulate an accurate lunar seismic wavefield is a challenging computational problem, owing to the inherent 3-D nature of the problem and the high frequencies (greater than 1 Hz) required. Here we focus on modeling the long duration code, studying the effects of the low velocities found in the megaregolith. We produce synthetic seismograms using 1-D slowness integration methodologies, GEMINI and reflectivity, and a 3-D Cartesian finite difference code, Wave Propagation Program, to study the effect of thin layers of low velocity on the surface of a planet. These codes allow us generate seismograms with dominant frequencies of approximately 1 Hz. For background lunar seismic structure we explore several models, including the recent model of Weber et al., Science, 2011. We also investigate variations in megaregolithic thickness, velocity, attenuation, and seismogram frequency content. Our results are compared to the Apollo seismic dataset, using both a cross correlation technique and integrated envelope approach to investigate coda decay. We find our new high frequency results strongly support the hypothesis that the long duration of the lunar seismic codes is generated by the presence of the low velocity megaregolith, and that the diffuse arrivals are a combination of scattered energy and multiple reverberations within this layer. The 3-D modeling indicates the extreme surface topography of the Moon adds only a small contribution to scattering effects, though local geology may play a larger role. We also study the effects of the megaregolith on core reflected and converted phases and other body waves. Our analysis indicates detection of core interacting arrivals with a polarization filter technique is robust and lends the possibility of detecting other body waves from the Moon
From MinX to MinC: Semantics-Driven Decompilation of Recursive Datatypes
Reconstructing the meaning of a program from its binary executable is known as
reverse engineering; it has a wide range of applications in software security, exposing piracy, legacy systems, etc. Since reversing is ultimately a search for meaning, there is much interest in inferring a type (a meaning) for the elements of a binary in a consistent way. Unfortunately existing approaches do not guarantee any semantic relevance for their reconstructed types. This paper presents a new and semantically-founded approach that provides strong guarantees for the reconstructed types. Key to our approach is the derivation of a witness program in a high-level language alongside the reconstructed types. This witness has the same semantics as the binary, is type correct by construction, and it induces a (justifiable) type assignment on the binary. Moreover, the approach effectively yields a type-directed decompiler. We formalise and implement the approach for reversing Minx, an abstraction of x86, to MinC, a type-safe dialect of C with recursive datatypes. Our evaluation compiles a range of textbook C algorithms to MinX and then recovers the original structures
The IPAC Image Subtraction and Discovery Pipeline for the intermediate Palomar Transient Factory
We describe the near real-time transient-source discovery engine for the
intermediate Palomar Transient Factory (iPTF), currently in operations at the
Infrared Processing and Analysis Center (IPAC), Caltech. We coin this system
the IPAC/iPTF Discovery Engine (or IDE). We review the algorithms used for
PSF-matching, image subtraction, detection, photometry, and machine-learned
(ML) vetting of extracted transient candidates. We also review the performance
of our ML classifier. For a limiting signal-to-noise ratio of 4 in relatively
unconfused regions, "bogus" candidates from processing artifacts and imperfect
image subtractions outnumber real transients by ~ 10:1. This can be
considerably higher for image data with inaccurate astrometric and/or
PSF-matching solutions. Despite this occasionally high contamination rate, the
ML classifier is able to identify real transients with an efficiency (or
completeness) of ~ 97% for a maximum tolerable false-positive rate of 1% when
classifying raw candidates. All subtraction-image metrics, source features, ML
probability-based real-bogus scores, contextual metadata from other surveys,
and possible associations with known Solar System objects are stored in a
relational database for retrieval by the various science working groups. We
review our efforts in mitigating false-positives and our experience in
optimizing the overall system in response to the multitude of science projects
underway with iPTF.Comment: 66 pages, 21 figures, 7 tables, accepted by PAS
- …
