1,865 research outputs found

    Polyubiquitin binding to ABIN1 is required to prevent autoimmunity

    Get PDF
    The protein ABIN1 possesses a polyubiquitin-binding domain homologous to that present in nuclear factor kappa B (NF-kappa B) essential modulator (NEMO), a component of the inhibitor of NF-kappa B (I kappa B) kinase (IKK) complex. To address the physiological significance of polyubiquitin binding, we generated knockin mice expressing the ABIN1[D485N] mutant instead of the wild-type (WT) protein. These mice developed all the hallmarks of autoimmunity, including spontaneous formation of germinal centers, isotype switching, and production of autoreactive antibodies. Autoimmunity was suppressed by crossing to MyD88(-/-) mice, demonstrating that toll-like receptor (TLR)-MyD88 signaling pathways are needed for the phenotype to develop. The B cells and myeloid cells of the ABIN1[D485N] mice showed enhanced activation of the protein kinases TAK, IKK-alpha/beta, c-Jun N-terminal kinases, and p38 alpha mitogen-activated protein kinase and produced more IL-6 and IL-12 than WT. The mutant B cells also proliferated more rapidly in response to TLR ligands. Our results indicate that the interaction of ABIN1 with polyubiquitin is required to limit the activation of TLR-MyD88 pathways and prevent autoimmunity

    A List Scheduling Heuristic with New Node Priorities and Critical Child Technique for Task Scheduling with Communication Contention

    Get PDF
    Task scheduling is becoming an important aspect for parallel programming of modern embedded systems. In this chapter, the application to be scheduled is modeled as a Directed Acyclic Graph (DAG), and the architecture targets parallel embedded systems composed of multiple processors interconnected by buses and/or switches. This chapter presents new list scheduling heuristics with communication contention. Furthermore, we define new node priorities (top level and bottom level) to sort nodes, and propose an advanced technique named critical child to select a processor to execute a node. Experimental results show that the proposed method is effective to reduce the schedule length, and the runtime performance is greatly improved in the cases of medium and high communication. Since the communication cost is increasing from medium to high in modern applications like digital communication and video compression, the proposed method is well-adapted for scheduling these applications over parallel embedded systems

    The Expression and Localization of N-Myc Downstream-Regulated Gene 1 in Human Trophoblasts

    Get PDF
    The protein N-Myc downstream-regulated gene 1 (NDRG1) is implicated in the regulation of cell proliferation, differentiation, and cellular stress response. NDRG1 is expressed in primary human trophoblasts, where it promotes cell viability and resistance to hypoxic injury. The mechanism of action of NDRG1 remains unknown. To gain further insight into the intracellular action of NDRG1, we analyzed the expression pattern and cellular localization of endogenous NDRG1 and transfected Myc-tagged NDRG1 in human trophoblasts exposed to diverse injuries. In standard conditions, NDRG1 was diffusely expressed in the cytoplasm at a low level. Hypoxia or the hypoxia mimetic cobalt chloride, but not serum deprivation, ultraviolet (UV) light, or ionizing radiation, induced the expression of NDRG1 in human trophoblasts and the redistribution of NDRG1 into the nucleus and cytoplasmic membranes associated with the endoplasmic reticulum (ER) and microtubules. Mutation of the phosphopantetheine attachment site (PPAS) within NDRG1 abrogated this pattern of redistribution. Our results shed new light on the impact of cell injury on NDRG1 expression patterns, and suggest that the PPAS domain plays a key role in NDRG1's subcellular distribution. © 2013 Shi et al

    Neoadjuvant chemotherapy in the setting of locally advanced olfactory neuroblastoma with intracranial extension

    Get PDF
    Olfactory neuroblastoma (esthesioneuroblastoma) is a rare malignant tumor of neuroectodermal origin. With only about 1,000 cases reported, there are no clear guidelines regarding management of this disease. Intracranial extension and orbital involvement have been shown to be independent risk factors associated with poorer outcomes. We hereby report a case of a 46-year old male presented with an 8-month history of progressive nasal obstruction and intermittent right-sided epistaxis associated with anosmia and increased pressure sensation in and around the right eye. Further evaluation revealed a large enhancing heterogeneous cystic and solid mass in the right nasal cavity measuring 5.0×5.3×4.6 cm with extension superiorly into the anterior cranial fossa and frontal lobes, ethmoid and sphenoid sinuses. A biopsy of this mass confirmed high grade olfactory neuroblastoma. Because of the intra-cranial extension, a decision was made to start neoadjuvant chemotherapy with cisplatin and etoposide. The patient had very good response to this treatment on a repeat imaging study and went on to have resection of this mass. Post-operatively, he received radiation therapy to the tumor bed and 2 more cycles of chemotherapy. He has been followed now for more than 8 months with no evidence of disease recurrence

    Lattice Boltzmann simulation of alumina-water nanofluid in a square cavity

    Get PDF
    A lattice Boltzmann model is developed by coupling the density (D2Q9) and the temperature distribution functions with 9-speed to simulate the convection heat transfer utilizing Al2O3-water nanofluids in a square cavity. This model is validated by comparing numerical simulation and experimental results over a wide range of Rayleigh numbers. Numerical results show a satisfactory agreement between them. The effects of Rayleigh number and nanoparticle volume fraction on natural convection heat transfer of nanofluid are investigated in this study. Numerical results indicate that the flow and heat transfer characteristics of Al2O3-water nanofluid in the square cavity are more sensitive to viscosity than to thermal conductivity

    The Functional DRD3 Ser9Gly Polymorphism (rs6280) Is Pleiotropic, Affecting Reward as Well as Movement

    Get PDF
    Abnormalities of motivation and behavior in the context of reward are a fundamental component of addiction and mood disorders. Here we test the effect of a functional missense mutation in the dopamine 3 receptor (DRD3) gene (ser9gly, rs6280) on reward-associated dopamine (DA) release in the striatum. Twenty-six healthy controls (HCs) and 10 unmedicated subjects with major depressive disorder (MDD) completed two positron emission tomography (PET) scans with [11C]raclopride using the bolus plus constant infusion method. On one occasion subjects completed a sensorimotor task (control condition) and on another occasion subjects completed a gambling task (reward condition). A linear regression analysis controlling for age, sex, diagnosis, and self-reported anhedonia indicated that during receipt of unpredictable monetary reward the glycine allele was associated with a greater reduction in D2/3 receptor binding (i.e., increased reward-related DA release) in the middle (anterior) caudate (p<0.01) and the ventral striatum (p<0.05). The possible functional effect of the ser9gly polymorphism on DA release is consistent with previous work demonstrating that the glycine allele yields D3 autoreceptors that have a higher affinity for DA and display more robust intracellular signaling. Preclinical evidence indicates that chronic stress and aversive stimulation induce activation of the DA system, raising the possibility that the glycine allele, by virtue of its facilitatory effect on striatal DA release, increases susceptibility to hyperdopaminergic responses that have previously been associated with stress, addiction, and psychosis

    Presenting the Uncertainties of Odds Ratios Using Empirical-Bayes Prediction Intervals

    Get PDF
    Quantifying exposure-disease associations is a central issue in epidemiology. Researchers of a study often present an odds ratio (or a logarithm of odds ratio, logOR) estimate together with its confidence interval (CI), for each exposure they examined. Here the authors advocate using the empirical-Bayes-based ‘prediction intervals’ (PIs) to bound the uncertainty of logORs. The PI approach is applicable to a panel of factors believed to be exchangeable (no extra information, other than the data itself, is available to distinguish some logORs from the others). The authors demonstrate its use in a genetic epidemiological study on age-related macular degeneration (AMD). The proposed PIs can enjoy straightforward probabilistic interpretations—a 95% PI has a probability of 0.95 to encompass the true value, and the expected number of true values that are being encompassed is for a total of 95% PIs. The PI approach is theoretically more efficient (producing shorter intervals) than the traditional CI approach. In the AMD data, the average efficiency gain is 51.2%. The PI approach is advocated to present the uncertainties of many logORs in a study, for its straightforward probabilistic interpretations and higher efficiency while maintaining the nominal coverage probability

    Highly Sensitive Determination of Hydrogen Peroxide and Glucose by Fluorescence Correlation Spectroscopy

    Get PDF
    BACKGROUND: Because H(2)O(2) is generated by various oxidase-catalyzed reactions, a highly sensitive determination method of H(2)O(2) is applicable to measurements of low levels of various oxidases and their substrates such as glucose, lactate, glutamate, urate, xanthine, choline, cholesterol and NADPH. We propose herein a new, highly sensitive method for the measurement of H(2)O(2) and glucose using fluorescence correlation spectroscopy (FCS). METHODOLOGY/PRINCIPAL FINDINGS: FCS has the advantage of allowing us to determine the number of fluorescent molecules. FCS measures the fluctuations in fluorescence intensity caused by fluorescent probe movement in a small light cavity with a defined volume generated by confocal illumination. We thus developed a highly sensitive determination system of H(2)O(2) by FCS, where horseradish peroxidase (HRP) catalyzes the formation of a covalent bond between fluorescent molecules and proteins in the presence of H(2)O(2). Our developed system gave a linear calibration curve for H(2)O(2) in the range of 28 to 300 nM with the detection limit of 8 nM. In addition, by coupling with glucose oxidase (GOD)-catalyzed reaction, the method allows to measure glucose in the range of 80 nM to 1.5 µM with detection limit of 24 nM. The method was applicable to the assay of glucose in blood plasma. The mean concentration of glucose in normal human blood plasma was determined to be 4.9 mM. CONCLUSIONS/SIGNIFICANCE: In comparison with commercial available methods, the detection limit and the minimum value of determination for glucose are at least 2 orders of magnitude more sensitive in our system. Such a highly sensitive method leads the fact that only a very small amount of plasma (20 nL) is needed for the determination of glucose concentration in blood plasma
    corecore