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recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Univ-Nantes

https://core.ac.uk/display/53011787?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00566153




A List Scheduling Heuristic with New Node
Priorities and Critical Child Technique for Task
Scheduling with Communication Contention

Pengcheng Mu, Jean-François Nezan, and Mickaël Raulet

Abstract Task scheduling is becoming an important aspect for parallel program-
ming of modern embedded systems. In this chapter, the application to be scheduled
is modeled as a Directed Acyclic Graph (DAG), and the architecture targets parallel
embedded systems composed of multiple processors interconnected by buses and/or
switches. This chapter presents new list scheduling heuristics with communication
contention. Furthermore we define new node priorities (top level and bottom level)
to sort nodes, and propose an advanced technique namely critical child to select a
processor to execute a node. Experimental results show that the proposed method
is effective to reduce the schedule length, and the runtime performance is greatly
improved in the cases of medium and high communication. Since the communi-
cation cost is increasing from medium to high in modern applications like digital
communication and video compression, the proposed method is well-adapted for
scheduling applications over parallel embedded systems.

1 Introduction

The recent evolution of digital communication and video compression applications
has dramatically increased complexities of both the algorithm and the embedded
system. To face this problem, System-on-a-Chip (SoC), which embeds several cores
(e.g. multi-core DSPs) and several hardware accelerators (e.g. Intellectual Proper-
ties), becomes the basic element to build complex multiprocessor embedded sys-
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IETR/Image and Remote Sensing Group, CNRS UMR 6164/INSA Rennes, 20, avenue des Buttes
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tems. This kind of system is also known as Multiprocessor System-on-Chip (MP-
SoC) [12]. Meanwhile, the language used for multiprocessor programming is chang-
ing from traditional C to dataflow language such as SystemC 1 and CAL [2]. This
kind of program is usually modeled as dataflow graph during compilation of multi-
processor programming [10].

Task scheduling of a dataflow description over a multi-component embedded
system is becoming more and more important due to the strict real-time constraints
and growing complexities of applications. It usually consists of assigning tasks to
components, specifying the order in which tasks are executed on each component,
and specifying the time at which they are executed. However, task scheduling is
not straightforward; when performed manually, the result is usually a suboptimal
solution. Scheduling on general parallel computer architectures has been actively
researched, but task scheduling on parallel embedded systems is different from
the general scheduling problem [18]. Communications between components have a
very important impact on the scheduling performance and the hardware resources’
utilization. Therefore, it is necessary to find new task scheduling methodologies
which produce optimal results for programming on parallel embedded systems.

This chapter aims at tackling the task scheduling problem for programming on
parallel embedded systems. The program is represented as a task graph modeled by
Directed Acyclic Graph (DAG) [13, 18], where nodes represent tasks (i.e. compu-
tations) and edges represent data flows (i.e. communications) between tasks. The
objective of task scheduling is to respectively assign computations and communi-
cations to processors and buses (communication links) of the target system in order
to get the minimum schedule length (makespan). The scheduling could be done at
compile time namely static or done at run time namely dynamic. Static scheduling
is more suitable than dynamic scheduling for deterministic applications in parallel
embedded systems by leading to lower code size and higher computation efficiency.
This chapter focuses on the static scheduling; all the task scheduling heuristics in
the following parts are done at compile time.

The general task scheduling problem is proven to be NP-hard [3, 13]; there-
fore, many works try to find heuristics to go up to the optimal solution. Early
task scheduling heuristics as in [1, 6] do not consider communication costs. As
the communication increases in modern applications, many scheduling heuris-
tics [13, 5, 21, 22, 8] have to take communications between tasks into account.
Most of these heuristics use fully connected topology network in which all com-
munications can be concurrently performed. Different arbitrary processor networks
are then used in [14, 7, 4, 17, 20] to accurately describe real parallel systems, and
the task scheduling takes communication contentions on communication links into
account.

Most of the above heuristics are based on the approach of list scheduling. Some
basic techniques are given in [15] for list scheduling with communication con-
tention. This chapter will provide more advanced techniques. Firstly, three new
groups of node priorities will be defined and used to sort nodes in addition to the

1 http://www.systemc.org/



two existing groups; secondly, a technique of using a node’s critical child will be
proposed to improve the performance of selecting a processor for this node. This
chapter will finally combine these two techniques giving efficiency runtime perfor-
mances.

The rest of this chapter is organized as follows: Section 2 firstly introduces neces-
sary models and definitions, then the task scheduling problem with communication
contention is described in this section. The node levels used for sorting nodes are
defined in Sect. 3. Our advanced list scheduling heuristic is proposed in Sect. 4, and
its time complexity is analyzed in Sect. 5. Section 6 gives experimental results, and
the chapter is concluded in Sect. 7 at last.

2 Models and Definitions

The program to be scheduled is called algorithm and is modeled as a DAG in this
chapter. The multiprocessor target system is called architecture and is modeled as a
topology graph. These models are detailed as follows.

2.1 DAG Model

A DAG is a directed acyclic graph G = (V,E,w,c) where V is the set of nodes and
E is the set of edges. A node represents a computation meaning that a node in the
graph can be a subprogram specified in another language (C, fortran). Between two
nodes ni,n j ∈ V , ei j denotes the edge from the origin node ni to the destination
node n j and represents the communication between these two computations. The
weight of node ni (denoted by w(ni)) represents the computation cost; the weight
of edge ei j(denoted by c(ei j)) represents the communication cost. In this model,
the set {nx ∈V : exi ∈ E} of all the direct predecessors of node ni is denoted by
pred (ni); the set {nx ∈V : eix ∈ E} of all the direct successors of node ni is denoted
by succ(ni). A node n with pred (n) = /0 is named a source node, where /0 is the
empty set. A node n with succ(n) = /0 is named a sink node.

The execution of computations on a processor is sequential and a computation
cannot be divided into several parts. A computation cannot start until all its input
communications are finished, and all its output communications cannot start until
this computation is finished. In general, communications are sequentially scheduled
on a communication link between two processors; however, when a switch is used,
communications can be simultaneously scheduled respecting the input and output
constraints above.

Figure 1 gives a DAG example which consists of 9 nodes and 12 edges, weights
of nodes and edges are also shown in this figure. This DAG has been used in [9] to
illustrate performances of different scheduling heuristics, and it will be also used in
Sect. 6.1 to show the performance of our method.
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Fig. 1 A DAG example

2.2 Topology Graph Model

A topology graph T G = (N,P,D,H,b) has been used to model a target system of
multiple processors interconnected by communication links and switches [17]. N is
the set of vertices, P is a subset of N, P ⊆ N, D is the set of directed edges, H is
the set of hyperedges, and b is the relative data rate of edge. The union of the two
edge sets D and H designates the link set L, L = D∪H, and an element of this set is
denoted by l, l ∈ L.

The topology graph is denoted as T G = (N,P,L,b) in this chapter, and directed
edges are not used in a target system. A vertex p ∈ P represents a processor, and
a vertex n ∈ N,n /∈ P represents a switch. Since directed edges are not used, a link
l ∈ L is actually a hyperedge h, which is a subset of two or more vertices of N,
h⊆ N, ∣h∣> 1. A hyperedge connects multiple vertices and represents a half-duplex
multidirectional communication link (e.g. a bus). The positive weight b(l), associ-
ated with a link l ∈ L, represents its relative data rate.

Differing from the vertex of processor, a switch is a vertex used only for con-
necting communication links, and no computation can be executed on it. Switches
are assumed to be ideal.

Ideal Switch For a switch s, let l1, l2, . . . , ln be all the communication links con-
nected to s. If two links li1 and li2 of them are not used for the mo-
ment, a communication can be transferred on li1 and li2 without any
impact from/to communications on other communication links con-
nected to s.

Switches are contention-free according to the above description. Separate com-
munication links connected to the same switch can be used for different communi-
cations at the same time; however, a new communication could not begin on a link if
this link is busy. Communication links are considered homogeneous in this chapter,
but processors can be heterogeneous. Therefore, the relative data rate is assumed to
be 1 for all the links, b(l) = 1,∀l ∈ L, but a computation usually needs different
execution durations on different types of processors.



Figure 2 gives three architecture examples: (a) three processors sharing a bus;
(b) eight processors connected to a switch by eight buses; and (c) six processors
interconnected by buses and switches. Figure 2(c) models the C6474 Evaluation
Module (EVM)2 which includes two C6474 multicore DSPs.
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Fig. 2 Architecture examples

A route is used to transfer data from one processor to another in the target system.
It is a chain of links connected by switches from the origin processor to the desti-
nation processor. For example, L1→ L7→ L4 is a route from P1 to P4 in Fig. 2(c).
Routing is an important aspect of task scheduling. Since the scheduling is static, a
route between two processors is also considered as static and is determined at com-
pile time. It is possible to determine routes once and to store them in a table, then
the routing during the scheduling becomes looking up the table.

2.3 Task Scheduling with Communication Contention

A schedule of a DAG is the association of a start time and a processor with each
node of the DAG. When the communication contention is considered, a schedule
also includes allocating communications to links and associating start times on these
links with each communication. A communication needs the same duration on each
link because of the homogeneity of links. However, a computation usually needs
different durations on different processors because processors are heterogeneous.
Therefore, the average duration of a computation on different types of processors is
used to present the node weight.

Following terms describe a schedule S of a DAG G = (V,E,w,c) over a topology
graph T G = (N,P,L,b). The start time of a node ni ∈ V on a processor p ∈ P is
denoted by ts (ni, p); the finish time is given by t f (ni, p)= ts (ni, p)+w(ni, p), where
w(ni, p) is the execution duration of ni on p. A node can be constrained to some
processors of the target system. The set of processors on which ni can be executed is
denoted by Proc(ni), and the processor on which ni is actually allocated is denoted

2 http://focus.ti.com/docs/toolsw/folders/print/tmdxevm6474.html



by proc(ni). The finish time of a processor is the maximum finish time among all
the nodes allocated on this processor, t f (p) = max

proc(ni)=p

{
t f (ni, proc(ni))

}
, and the

schedule length of S is the maximum finish time among all the processors in the
system, sl (S) = max

p∈P

{
t f (p)

}
.

The communication represented by an edge exists only when its origin node
and destination node are not allocated on the same processor. The start time of an
existing edge ei j ∈ E on a link l ∈ L is denoted by ts (ei j, l); the finish time of ei j is
given by t f (ei j, l) = ts (ei j, l)+c(ei j). A node (computation) can start on a processor
at the time when all the node’s input edges (communications) finish. This time is
called the Data Ready Time (DRT) and is denoted by tdr (n j, p) = max

ei j∈E

{
t f (ei j, l)

}
,

where l is a link on which ei j is allocated. DRT is the earliest time when a node can
start. If n j is a node without input edge, tdr (n j, p) = 0,∀p ∈ P.

Node Scheduling Condition For a node ni, let [A,B] ,A,B∈ [0,∞] be an idle time
interval on the processor p. ni can be scheduled on p within
[A,B] if

max{A, tdr (ni, p)}+w(ni, p)≤ B

The start time of ni on p is given by

ts (ni, p) = max{A, tdr (ni, p)}

Communications are handled in the way of cut-through on a route because of
the circuit switching. Therefore, an edge ei j is aligned on all the links of the route
lR1→ lR2→ . . .→ lRk with ts (ei j, lR1) = ts (ei j, lR2) = . . .= ts

(
ei j, lRk

)
. The start time

and finish time of ei j on all the links of the route are uniformly denoted by ts (ei j)
and t f (ei j) with t f (ei j) = ts (ei j)+ c(ei j).

Edge Scheduling Condition For a DAG G = (V,E,w,c) and a topology graph
T G = (N,P,L,b), let lR1 → lR2 → . . .→ lRk be a route for an
edge ei j ∈ E and let [A,B] ,A,B ∈ [0,∞] be a common idle time
interval on all the links of this route. ei j can be scheduled on
this route within [A,B] if

max
{

A, t f (ni, proc(ni))
}
+ c(ei j)≤ B

The start time of ei j on this route is given by

ts (ei j) = max
{

A, t f (ni, proc(ni))
}

3 Node Levels with Communication Contention

The top level and bottom level are usually used as node priorities which are impor-
tant for DAG scheduling as in [14, 16]. The top level of a node is the length of the



longest path from any source node to this node, excluding the weight of this node;
the bottom level of a node is the length of the longest path from this node to any
sink node, including the weight of this node.

3.1 Existing Node Levels

Two groups of top and bottom levels have been used in task scheduling heuristics,
which are respectively named as computation top/bottom levels (tlcomp and blcomp)
and top/bottom levels (tl and bl). Figure 3 illustrates the dependences between nodes
for the two existing groups of top levels and bottom levels, where the red dotted
nodes and edges are used to recursively define the top levels and bottom levels of
ni.

n pred

n i

nsucc
tlcomp

n pred
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nsucc
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n pred

n i
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Fig. 3 Two existing groups of node levels

∙ Computation top level and bottom level (Fig. 3(a))
The computation top level of a node is the length of the longest path from any
source node to this node including only the weights of nodes; the computation
bottom level of a node is the length of the longest path from this node to any sink
node including only the weights of nodes. The weights of edges are not taken
into account in the computation top level and bottom level. They are recursively
defined as follows:

tlcomp (ni) =

⎧⎨⎩
0, if ni is a source node

max
nk∈pred(ni)

{
tlcomp (nk)+w(nk)

}
, otherwise

blcomp (ni) =

⎧⎨⎩
w(ni) , if ni is a sink node

max
nk∈succ(ni)

{
blcomp (nk)

}
+w(ni) , otherwise



∙ Top level and bottom level (Fig. 3(b))
The top level and bottom level additionally take the weights of edges on the path
into account by contrast with the computation top level and bottom level. They
are recursively defined as follows:

tl (ni) =

⎧⎨⎩
0, if ni is a source node

max
nk∈pred(ni)

{tl (nk)+w(nk)+ c(eki)} , otherwise

bl (ni) =

⎧⎨⎩
w(ni) , if ni is a sink node

max
nk∈succ(ni)

{bl (nk)+ c(eik)}+w(ni) , otherwise

3.2 New Node Levels

Besides the two existing groups, this chapter proposes three new groups. The de-
pendences between nodes for the three new groups of top levels and bottom levels
are shown in Fig. 4. The formalized definitions of top levels and bottom levels are
given as follows.
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Fig. 4 Three new groups of node levels

∙ Input top level and bottom level (Fig. 4(a))
The input top level and bottom level take into account weights of nodes on the
path as well as weights of all the input edges of a node on the path. They are
recursively defined as follows:

tlin (ni) =

⎧⎨⎩
0, if ni is a source node

max
nk∈pred(ni)

{tlin (nk)+w(nk)}+ ∑
eli∈E

c(eli) , otherwise



blin (ni) =

⎧⎨⎩
w(ni) , if ni is a sink node

max
nk∈succ(ni)

{
blin (nk)+ ∑

elk∈E
c(elk)

}
+w(ni) , otherwise

∙ Output top level and bottom level (Fig. 4(b))
The output top level and bottom level take into account weights of nodes on the
path as well as weights of all the output edges of a node on the path. They are
recursively defined as follows:

tlout (ni) =

⎧⎨⎩
0, if ni is a source node

max
nk∈pred(ni)

{
tlout (nk)+w(nk)+ ∑

ekl∈E
c(ekl)

}
, otherwise

blout (ni) =

⎧⎨⎩
w(ni) , if ni is a sink node

max
nk∈succ(ni)

{blout (nk)}+ ∑
eil∈E

c(eil)+w(ni) , otherwise

∙ Input/output top level and bottom level (Fig. 4(c))
The input/output top level and bottom level take into account weights of nodes
on the path as well as weights of all the input and output edges of a node on the
path. They are recursively defined as follows:

tlio (ni) =

⎧⎨⎩

0, if ni is a source node

max
nk∈pred(ni)

{
tlio (nk)+w(nk)+ ∑

ekl∈E
c(ekl)− c(eki)

}
+ ∑

eli∈E
c(eli) , otherwise

blio (ni) =

⎧⎨⎩

w(ni) , if ni is a sink node

max
nk∈succ(ni)

{
blio (nk)+ ∑

elk∈E
c(elk)− c(eik)

}
+ ∑

eil∈E
c(eil)+w(ni) , otherwise

The three new groups take into account the communication contention between
nodes in comparison with the two existing groups which are usually used in the list
scheduling without communication contention. Table 1 gives all the five groups of
top levels and bottom levels for the DAG given in Fig. 1.



Table 1 Different node levels
tlcomp blcomp tl bl tlin blin tlout blout tlio blio

n1 0 11 0 23 0 41 0 35 0 55
n2 2 8 6 15 6 35 19 16 19 36
n3 2 8 3 14 3 26 19 14 19 26
n4 2 9 3 15 3 27 19 15 19 27
n5 2 5 3 5 3 5 19 5 19 5
n6 5 5 10 10 10 21 24 10 24 21
n7 5 5 12 11 20 21 24 11 34 21
n8 6 5 8 10 9 21 24 10 25 21
n9 10 1 22 1 40 1 34 1 54 1

4 List Scheduling Heuristic

Algorithm 1 gives the commonly used static list scheduling heuristic. This algorithm
is composed of three procedures of Sort Nodes(), Select Processor()
and Schedule Node(). This section describes improvements for the first two
procedures compared with the classic methods given in [17].

Algorithm 1: List Scheduling(G, T G)
Input: A DAG G = (V,E,w,c) and a topology graph T G = (N,P,L,b)
Output: A schedule of G on T G
NodeList← Sort Nodes(V );1
for each n ∈ NodeList do2

pbest ← Select Processor(n, P);3
Schedule Node(n, pbest );4

end5

4.1 Sorting Nodes with Five Groups of Node Priorities

Nodes are firstly sorted into a static list by the procedure of Sort Nodes() in the
heuristic. Since the order of nodes in the list affects much the schedule result, many
different priority schemes have been proposed to sort nodes [14, 8]. Experiments
in [16] show that list scheduling with static list sorted by bottom level outperforms
other compared contention aware algorithms. Our list scheduling heuristic uses the
bottom level and top level to sort nodes, the procedure of Sort Nodes() sorts
nodes into a list of NodeList according to the following rule:

Rule for Sorting Nodes Nodes are sorted by the decreasing order of their bottom
levels; if two nodes have equal bottom levels, the one with greater top



level is placed before the other; if both the bottom level and the top level
are equal, these nodes are sorted randomly.

According to the five groups of top levels and bottom levels given in Table 1, the
resulting static lists are shown in Table 2.

Table 2 Different static node lists
Node priority Static node list No.

blcomp & tlcomp n1,n4,n3,n2,n8,n7,n6,n5,n9 (1)
bl & tl n1,n2,n4,n3,n7,n6,n8,n5,n9 (2)

blin & tlin n1,n2,n4,n3,n7,n6,n8,n5,n9 (2)
blout & tlout n1,n2,n4,n3,n7,n8,n6,n5,n9 (3)
blio & tlio n1,n2,n4,n3,n7,n8,n6,n5,n9 (3)

4.2 Processor Selection

The classic list scheduling heuristic selects the processor allowing the earliest finish
time for a node. This rule probably gives a locally optimized result. In fact, this rule
usually gives bad results for the join structure of a DAG especially in the case of
great communication cost and communication contention. Figure 5(a) shows such
an example; Figure 5(b) gives the schedule result with the classic processor selec-
tion method, which selects a new processor for each one of n1, n2 and n3 to provide
the earliest finish time. Therefore, the execution of node n4 has to wait until the
communications from n2 and n3 finish, and the schedule length is 6 at last. By con-
trast, the schedule of all nodes on the same processor is shown in Fig. 5(c) and has
a schedule length of 4.

n1 n2 n3

n4

1 1 1

1

2 2 2

(a)

P1

0 5

P2

P3

L1

n1

n2

6

n3

n4

e3,4e2,4

time

(b)

P1

0 5

P2

P3

L1

n1 n2

4

n3 n4
time

(c)

Fig. 5 A join DAG and two different schedule results

In [8], the critical child of a node is defined as one of its successors that has the
smallest difference between the absolute latest possible start time (ALST) and the
absolute earliest possible start time (AEST). It is used for scheduling in the case



of unbounded number of processors and without communication contention. This
chapter uses the concept of critical child for list scheduling in the case of bounded
number of processors and with communication contention. The critical child is dif-
ferently defined as follows.

Critical Child Given a static node list NodeList, the critical child of node ni is de-
noted by cc(ni) and is one of ni’s successors which emerges firstly
in NodeList.

According to this definition, the critical child of ni may be different if NodeList
differs. This is the major difference between our critical child and that in [8]. Ta-
ble 3 shows the critical children according to the different static node lists given in
Table 2.

Table 3 Critical children according to different static node lists

No. n1 n2 n3 n4 n5 n6 n7 n8 n9
(1) n4 n7 n8 n8 null n9 n9 n9 null
(2) n2 n7 n8 n8 null n9 n9 n9 null
(3) n2 n7 n8 n8 null n9 n9 n9 null

Using critical child makes the processor selection take into account not only the
predecessors of a node, but also its most important successor. Our method of using
the critical child to select processor is given in Algorithm 2. Since it is possible
that cc(ni) is not a free node with all its predecessors scheduled during the proces-
sor selection for ni, the scheduling of cc(ni) only takes into account its scheduled
predecessors in the procedure of Select Processor() for ni.

4.3 Node and Edge Scheduling

The method of scheduling a node ni onto a processor p is given in Algorithm 3, and
Algorithm 4 gives the method for edge scheduling. Since an edge ei j is scheduled
only when its origin node ni has been scheduled, the scheduling of this edge needs
additionally the processor p on which the destination node n j of ei j to be scheduled.

5 Analysis of Time Complexity

In [15] the time complexity of the classic list scheduling heuristic is given as
O
(
PE2O(routing)+V 2

)
, where P, V and E are the number of processors, the num-

ber of nodes and the number of edges, respectively. The time complexity increases
by a factor of P by using the critical child, but the combination with different node



Algorithm 2: Select Processor(ni, P)
Input: A node ni ∈V and the set P of all processors
Output: The best processor pbest for the input node ni
Choose the critical child cc(ni);1
BestFinishTime← ∞;2
for each p ∈ Proc(ni) do3

FinishTime← Schedule Node(ni, p);4
MinFinishTime← ∞;5
if cc(ni) ∕= null then6

for each p′ ∈ Proc(cc(ni)) do7
FinishTime← Schedule Node(cc(ni), p′);8
if FinishTime < MinFinishTime then9

MinFinishTime← FinishTime;10
end11
Unschedule the input edges of cc(ni);12
Unschedule cc(ni) from p′;13

end14
else15

MinFinishTime← FinishTime;16
end17
if MinFinishTime < BestFinishTime then18

BestFinishTime←MinFinishTime;19
pbest ← p;20

end21
Unschedule the input edges of ni;22
Unschedule ni from p;23

end24

Algorithm 3: Schedule Node(ni, p)
Input: ni ∈V and a processor p ∈ P
Output: The finish time of ni on p
for each nl ∈ pred (ni) , proc(nl) ∕= p do1

Schedule Edge(eli, p);2
end3
Calculate DRT of node ni;4
Find the earliest idle time interval for node ni on processor p respecting the node scheduling5
condition;
Calculate the finish time of ni on p;6

priorities does not increase the time complexity. The time complexity of our pro-
posed list scheduling heuristic is analyzed as follows.

The route can be determined (calculated or looked up) in O(1) time in the pro-
cedure Schedule Edge() for static routing. If the route contains O(routing)
links, it takes O(EO(routing)) time to find the earliest common idle time in-
terval on all links of the route. Thus, the complexity of Schedule Edge() is
O(EO(routing)).



Algorithm 4: Schedule Edge(ei j, p)
Input: ei j ∈ E and a processor p ∈ P on which the node n j is to be scheduled
Output: None
if ni is scheduled then1

if proc(ni) ∕= p then2
Determine the route R from proc(ni) to p;3
Find the earliest common idle time interval on all the links of R respecting the edge4
scheduling condition;

end5
end6

The procedure Schedule Node() firstly needs to use O
(E

V

)
times of the pro-

cedure Schedule Edge() on average, then it takes O
(E

V

)
time to calculate the

DRT, and it takes O
(V

P

)
time to find an idle time interval for a node on average.

At last, it takes O(1) time to calculate the finish time of the node. Therefore, the

total complexity of the procedure Schedule Node() is O
(

E2O(routing)
V + V

P

)
on

average.
As to the procedure Select Processor(), it firstly takes O(V ) time to find

the critical child cc(ni). When cc(ni) is found, given a specific processor p, it needs
at most O(P) times of Schedule Node() for the scheduling of ni and cc(ni).

Hence, the complexity in the outer for-loop is O
(

P
(

E2O(routing)
V + V

P

))
, and the

total complexity of Select Processor() is O
(

P
(

PE2O(routing)
V +V

))
.

In Algorithm 1, sorting nodes has the complexity of O(V logV +E) (comput-
ing node levels in O(V +E) + sorting in O(V logV )). Our new definitions of
top level and bottom level do not change the complexity of computing node lev-
els; therefore, the complexity of sorting nodes is always O(V logV +E). Since
the procedure Select Processor() is more complicated than the procedure
Schedule Node(), the complexity in the for-loop is equal to that of the proce-
dure Select Processor(). Finally, the total complexity of the proposed list
scheduling heuristic is given by O

(
P
(
PE2O(routing)+V 2

))
.

6 Experimental Results

This section gives experimental results of our proposed list scheduling heuristic
compared to the classic one given in [17]. The architecture in Fig. 2(a) and 2(b) are
used for the comparison in Sect. 6.1 and 6.2, respectively.



6.1 Comparison with an Example

The DAG given in Fig. 1 is used in this section to show that using the critical child
and different priorities improves the schedule performance. Table 1 has given all
the five groups of top levels and bottom levels; the resulting static lists are given in
Table 2; and the critical child for each node is obtained according to these static lists
in Table 3.

Figure 6 gives the schedule result of the classic heuristic with nodes sorted by bl
and tl, where the schedule length is 21. Using the critical child technique with the
three different node lists in Table 2 gives different schedule results. The schedule
result for the node list sorted by blcomp and tlcomp is shown in Fig. 7(a) with the
schedule length of 18. Since the node list sorted by bl and tl is same as that sorted
by blin and tlin, the same schedule result is obtained and shown in Fig. 7(b) with the
schedule length of 18. Figure 7(c) gives the schedule result for the same node list
sorted by blout and tlout and by blio and tlio. The schedule length is 17 and is better
than the two former schedule lengths of 18. All the three schedule results of using
the critical child technique are better than that of the classic heuristic.

P1

0 5 10 15 20 25
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P3

L1

21

n1 n2 n7 n5

n4 n6

n3 n8

n9

e1,4e1,3 e2,6 e4,8 e7,9 e8,9

Fig. 6 Schedule result of classic heuristic

6.2 Comparison with Random DAGs

Random graphs are commonly used to compare scheduling algorithms in order
to get statistical results which are more persuasive than the result for a particular
graph. We implement a graph generator based on SDF3 [19] to generate random
SDF graphs [11] except that the SDF graphs are constrained to be DAGs (same rate
between two operations, no cycles). A random DAG is described in five aspects: the
number of nodes, the average in degree, the average out degree, the random weights
of nodes and the random weights of edges. The average in degree and out degree
are assumed to be same. The weights of nodes vary randomly from wmin to wmax.
The communication to computation ratio (CCR) is used to generate random weights
of edges. The CCR is defined as the average weight of edges divided by the aver-
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Fig. 7 Schedule results with critical child

age weight of nodes in this chapter, that is CCR =

1
∣E∣ ∑

e∈E
c(e)

1
∣V ∣ ∑

n∈V
w(n)

. The weights of edges

are generated randomly from wmin×CCR to wmax×CCR. The CCR’s typical val-
ues of 0.1, 1 and 10 represent the low, medium and high communication situations,
respectively.

A list scheduling heuristic can use all the five groups of node priorities to get
different results. We combine the five groups of node priorities with a heuristic
and choose the best result; the whole process is called a combined heuristic. The
schedule length of the combined heuristic is compared to the classic list scheduling
heuristic with nodes sorted by bl and tl. The acceleration factor (acc) is defined as
acc = slclassic

slcompared
to show the speed-up of the compared heuristic.

Figure 8 gives the average acc of the combined heuristic with critical child.
Weights of nodes are generated randomly from 100 to 1000, and 1000 random DAGs
for each group are tested to obtain the statistical results.
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Fig. 8 Average acc of combined heuristic with critical child

The average acc increases as CCR increases, and the schedule result is sped up
by using the combined heuristic in the cases of CCR= 1 and CCR= 10. The average
acc also increases as the number of average in/out degree increases when CCR =
10. The reason for this phenomenon is that the critical child technique helps to
select better processors for nodes with multiple predecessors. The greater the in/out
degree is, the better the critical child works. Since the modern applications like
digital communication and video compression usually have CCR > 1, our method
will be suitable for scheduling these applications on parallel embedded systems.

6.3 Time Complexity

Figure 9 shows the time used to schedule different sizes of DAGs on architectures
with different numbers of processors by our combined heuristic. All the DAGs have
the average in/out degree of 4, and all the processors are connected to a switch. As
shown in Fig. 9(a) and Fig. 9(b), the time increases as the square of V and also as
the square of P. We run our heuristic on a Pentium Dual-Core PC at 2.4GHz, and it
takes about 3 minutes to schedule a DAG with 500 nodes on an architecture of 16
processors.

By contrast, Figure 10 shows the time used by the classic heuristic. As shown in
Fig. 10(a) and Fig. 10(b), the time increases with the square of V , but it increases
linearly with P.

In fact, a complicated embedded application usually has less than 500 nodes in
models of coarse and medium grain, and P is usually much smaller than V and E in a
parallel embedded system. Therefore, the increase of time complexity is reasonable
and acceptable for rapid prototyping.



100 200 300 400 500
0

20000
40000
60000
80000

100000
120000
140000
160000
180000
200000

Time complexity

P=16
P=12
P=8
P=4

V

Ti
m

e 
(m

s)

(a)

2 4 6 8 10 12 14 16
0

20000
40000
60000
80000

100000
120000
140000
160000
180000
200000

Time complexity

V=500
V=300
V=100

P

Ti
m

e 
(m

s)

(b)

Fig. 9 Time complexity of the proposed heuristic
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Fig. 10 Time complexity of the classic heuristic

7 Conclusions

This chapter presents three new groups of node priorities (top level and bottom level)
and a technique of critical child for list scheduling with communication contention.
The new priorities take the communication contention into account and are used to
sort nodes in order to get different node lists. The technique of critical child helps
to select a better processor for a node. The combination of different node lists and
the critical child technique gives different schedule results for a given DAG, and the
best one is chosen at last. Experimental results show that using different node lists
and the critical child technique is effective to shorten the schedule length for most
of the randomly generated DAGs in the cases of medium and high communication.
Since the communication cost is increasing from medium to high in modern digital
communication and video compression applications, our method will work well for
scheduling these applications on parallel embedded systems.
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