195 research outputs found
The Relativistic Factor in the Orbital Dynamics of Point Masses
There is a growing population of relativistically relevant minor bodies in
the Solar System and a growing population of massive extrasolar planets with
orbits very close to the central star where relativistic effects should have
some signature. Our purpose is to review how general relativity affects the
orbital dynamics of the planetary systems and to define a suitable relativistic
correction for Solar System orbital studies when only point masses are
considered. Using relativistic formulae for the N body problem suited for a
planetary system given in the literature we present a series of numerical
orbital integrations designed to test the relevance of the effects due to the
general theory of relativity in the case of our Solar System. Comparison
between different algorithms for accounting for the relativistic corrections
are performed. Relativistic effects generated by the Sun or by the central star
are the most relevant ones and produce evident modifications in the secular
dynamics of the inner Solar System. The Kozai mechanism, for example, is
modified due to the relativistic effects on the argument of the perihelion.
Relativistic effects generated by planets instead are of very low relevance but
detectable in numerical simulations
A purely algebraic construction of a gauge and renormalization group invariant scalar glueball operator
This paper presents a complete algebraic proof of the renormalizability of
the gauge invariant operator to all orders of
perturbation theory in pure Yang-Mills gauge theory, whereby working in the
Landau gauge. This renormalization is far from being trivial as mixing occurs
with other gauge variant operators, which we identify explicitly. We
determine the mixing matrix to all orders in perturbation theory by using
only algebraic arguments and consequently we can uncover a renormalization
group invariant by using the anomalous dimension matrix derived from
. We also present a future plan for calculating the mass of the lightest
scalar glueball with the help of the framework we have set up.Comment: 17 page
Metal enrichment processes
There are many processes that can transport gas from the galaxies to their
environment and enrich the environment in this way with metals. These metal
enrichment processes have a large influence on the evolution of both the
galaxies and their environment. Various processes can contribute to the gas
transfer: ram-pressure stripping, galactic winds, AGN outflows, galaxy-galaxy
interactions and others. We review their observational evidence, corresponding
simulations, their efficiencies, and their time scales as far as they are known
to date. It seems that all processes can contribute to the enrichment. There is
not a single process that always dominates the enrichment, because the
efficiencies of the processes vary strongly with galaxy and environmental
properties.Comment: 18 pages, 8 figures, accepted for publication in Space Science
Reviews, special issue "Clusters of galaxies: beyond the thermal view",
Editor J.S. Kaastra, Chapter 17; work done by an international team at the
International Space Science Institute (ISSI), Bern, organised by J.S.
Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke
A Model for the Development of the Rhizobial and Arbuscular Mycorrhizal Symbioses in Legumes and Its Use to Understand the Roles of Ethylene in the Establishment of these two Symbioses
We propose a model depicting the development of nodulation and arbuscular mycorrhizae. Both processes are dissected into many steps, using Pisum sativum L. nodulation mutants as a guideline. For nodulation, we distinguish two main developmental programs, one epidermal and one cortical. Whereas Nod factors alone affect the cortical program, bacteria are required to trigger the epidermal events. We propose that the two programs of the rhizobial symbiosis evolved separately and that, over time, they came to function together. The distinction between these two programs does not exist for arbuscular mycorrhizae development despite events occurring in both root tissues. Mutations that affect both symbioses are restricted to the epidermal program. We propose here sites of action and potential roles for ethylene during the formation of the two symbioses with a specific hypothesis for nodule organogenesis. Assuming the epidermis does not make ethylene, the microsymbionts probably first encounter a regulatory level of ethylene at the epidermis–outermost cortical cell layer interface. Depending on the hormone concentrations there, infection will either progress or be blocked. In the former case, ethylene affects the cortex cytoskeleton, allowing reorganization that facilitates infection; in the latter case, ethylene acts on several enzymes that interfere with infection thread growth, causing it to abort. Throughout this review, the difficulty of generalizing the roles of ethylene is emphasized and numerous examples are given to demonstrate the diversity that exists in plants
A new proposal for Galactic dark matter: Effect of f(T) gravity
It is still a challenging problem to the theoretical physicists to know the
exact nature of the galactic dark matter which causes the galactic rotational
velocity to be more or less a constant. We have proposed that the dark matter
as an effect of f(T) gravity. Assuming the flat rotation curves as input we
have shown that f(T) gravity can explain galactic dynamics. Here, we don' have
to introduce dark matter. Spacetime metric inspired by f(T) gravity describes
the region up to which the tangential velocity of the test particle is
constant. This inherent property appears to be enough to produce stable
circular orbits as well as attractive gravity.Comment: 7 pages and 1 figure. Minor corrections are made. Accepted for
publication in Int.J.Theor.Phy
Heavy quarkonium: progress, puzzles, and opportunities
A golden age for heavy quarkonium physics dawned a decade ago, initiated by
the confluence of exciting advances in quantum chromodynamics (QCD) and an
explosion of related experimental activity. The early years of this period were
chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in
2004, which presented a comprehensive review of the status of the field at that
time and provided specific recommendations for further progress. However, the
broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles
could only be partially anticipated. Since the release of the YR, the BESII
program concluded only to give birth to BESIII; the -factories and CLEO-c
flourished; quarkonium production and polarization measurements at HERA and the
Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the
deconfinement regime. All these experiments leave legacies of quality,
precision, and unsolved mysteries for quarkonium physics, and therefore beg for
continuing investigations. The plethora of newly-found quarkonium-like states
unleashed a flood of theoretical investigations into new forms of matter such
as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the
spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b},
and b\bar{c} bound states have been shown to validate some theoretical
approaches to QCD and highlight lack of quantitative success for others. The
intriguing details of quarkonium suppression in heavy-ion collisions that have
emerged from RHIC have elevated the importance of separating hot- and
cold-nuclear-matter effects in quark-gluon plasma studies. This review
systematically addresses all these matters and concludes by prioritizing
directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K.
Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D.
Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A.
Petrov, P. Robbe, A. Vair
Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel
A major use of the 1000 Genomes Project (1000GP) data is genotype imputation in genome-wide association studies (GWAS). Here we develop a method to estimate haplotypes from low-coverage sequencing data that can take advantage of single-nucleotide polymorphism (SNP) microarray genotypes on the same samples. First the SNP array data are phased to build a backbone (or 'scaffold') of haplotypes across each chromosome. We then phase the sequence data 'onto' this haplotype scaffold. This approach can take advantage of relatedness between sequenced and non-sequenced samples to improve accuracy. We use this method to create a new 1000GP haplotype reference set for use by the human genetic community. Using a set of validation genotypes at SNP and bi-allelic indels we show that these haplotypes have lower genotype discordance and improved imputation performance into downstream GWAS samples, especially at low-frequency variants. © 2014 Macmillan Publishers Limited. All rights reserved
- …