1,355 research outputs found

    Mastectomy with axillary clearance versus mastectomy without it

    Get PDF
    No Abstract

    Dr. Murray, et al

    Full text link

    Theory of Double-Sided Flux Decorations

    Full text link
    A novel two-sided Bitter decoration technique was recently employed by Yao et al. to study the structure of the magnetic vortex array in high-temperature superconductors. Here we discuss the analysis of such experiments. We show that two-sided decorations can be used to infer {\it quantitative} information about the bulk properties of flux arrays, and discuss how a least squares analysis of the local density differences can be used to bring the two sides into registry. Information about the tilt, compressional and shear moduli of bulk vortex configurations can be extracted from these measurements.Comment: 17 pages, 3 figures not included (to request send email to [email protected]

    Fractional reaction-diffusion equations

    Full text link
    In a series of papers, Saxena, Mathai, and Haubold (2002, 2004a, 2004b) derived solutions of a number of fractional kinetic equations in terms of generalized Mittag-Leffler functions which provide the extension of the work of Haubold and Mathai (1995, 2000). The subject of the present paper is to investigate the solution of a fractional reaction-diffusion equation. The results derived are of general nature and include the results reported earlier by many authors, notably by Jespersen, Metzler, and Fogedby (1999) for anomalous diffusion and del-Castillo-Negrete, Carreras, and Lynch (2003) for reaction-diffusion systems with L\'evy flights. The solution has been developed in terms of the H-function in a compact form with the help of Laplace and Fourier transforms. Most of the results obtained are in a form suitable for numerical computation.Comment: LaTeX, 17 pages, corrected typo

    Towards the critical behavior for the light nuclei by NIMROD detector

    Get PDF
    The critical behavior for the light nuclei with A36\sim 36 has been investigated experimentally by the NIMROD multi-detectors. The wide variety of observables indicate the critical point has been reached in the disassembly of hot nuclei at an excitation energy of 5.6±\pm0.5 MeV/u.Comment: 4 pages, 2 figures; Proceeding of 18th Nuclear Physics Division Conference of the Euro. Phys. Society (NPDC18) "Phase transitions in strongly interacting matter", Prague, 23.8.-29.8. 2004. To be published in Nuclear Physics

    Methane emissions among individual dairy cows during milking quantified by eructation peaks or ratio with carbon dioxide

    Get PDF
    The aims of this study were to compare methods for examining measurements of CH4 and CO2 emissions of dairy cows during milking and to assess repeatability and variation of CH4 emissions among individual dairy cows. Measurements of CH4 and CO2 emissions from 36 cows were collected in 3 consecutive feeding periods. In the first period, cows were fed a commercial partial mixed ration (PMR) containing 69% forage. In the second and third periods, the same 36 cows were fed a high-forage PMR ration containing 75% forage, with either a high grass silage or high maize silage content. Emissions of CH4 during each milking were examined using 2 methods. First, peaks in CH4 concentration due to eructations during milking were quantified. Second, ratios of CH4 and CO2 average concentrations during milking were calculated. A linear mixed model was used to assess differences between PMR. Variation in CH4 emissions was observed among cows after adjusting for effects of lactation number, week of lactation, diet, individual cow, and feeding period, with coefficients of variation estimated from variance components ranging from 11 to 14% across diets and methods of quantifying emissions. No significant difference was detected between the 3 PMR in CH4 emissions estimated by either method. Emissions of CH4 calculated from eructation peaks or as CH4 to CO2 ratio were positively associated with forage dry matter intake. Ranking of cows according to CH4 emissions on different diets was correlated for both methods, although rank correlations and repeatability were greater for CH4 concentration from eructation peaks than for CH4-to-CO2 ratio. We conclude that quantifying enteric CH4 emissions either using eructation peaks in concentration or as CH4-to-CO2 ratio can provide highly repeatable phenotypes for ranking cows on CH4 output

    Martensitic transition and magnetoresistance in a Cu-Al-Mn shape memory alloy. Influence of aging

    Get PDF
    We have studied the effect of ageing within the miscibility gap on the electric, magnetic and thermodynamic properties of a non-stoichiometric Heusler Cu-Al-Mn shape-memory alloy, which undergoes a martensitic transition from a bccbcc-based (β\beta-phase) towards a close-packed structure (MM-phase). Negative magnetoresistance which shows an almost linear dependence on the square of magnetization with different slopes in the MM- and β\beta-phases, was observed. This magnetoresistive effect has been associated with the existence of Mn-rich clusters with the Cu2_2AlMn-structure. The effect of an applied magnetic field on the martensitic transition has also been studied. The entropy change between the β\beta- and MM-phases shows negligible dependence on the magnetic field but it decreases significantly with annealing time within the miscibility gap. Such a decrease is due to the increasing amount of Cu2_2MnAl-rich domains that do not transform martensitically.Comment: 9 pages, 9 figures, accepted for publication in PR

    A dual role for prediction error in associative learning

    Get PDF
    Confronted with a rich sensory environment, the brain must learn statistical regularities across sensory domains to construct causal models of the world. Here, we used functional magnetic resonance imaging and dynamic causal modeling (DCM) to furnish neurophysiological evidence that statistical associations are learnt, even when task-irrelevant. Subjects performed an audio-visual target-detection task while being exposed to distractor stimuli. Unknown to them, auditory distractors predicted the presence or absence of subsequent visual distractors. We modeled incidental learning of these associations using a Rescorla--Wagner (RW) model. Activity in primary visual cortex and putamen reflected learning-dependent surprise: these areas responded progressively more to unpredicted, and progressively less to predicted visual stimuli. Critically, this prediction-error response was observed even when the absence of a visual stimulus was surprising. We investigated the underlying mechanism by embedding the RW model into a DCM to show that auditory to visual connectivity changed significantly over time as a function of prediction error. Thus, consistent with predictive coding models of perception, associative learning is mediated by prediction-error dependent changes in connectivity. These results posit a dual role for prediction-error in encoding surprise and driving associative plasticity

    The influence of gene expression time delays on Gierer-Meinhardt pattern formation systems

    Get PDF
    There are numerous examples of morphogen gradients controlling long range signalling in developmental and cellular systems. The prospect of two such interacting morphogens instigating long range self-organisation in biological systems via a Turing bifurcation has been explored, postulated, or implicated in the context of numerous developmental processes. However, modelling investigations of cellular systems typically neglect the influence of gene expression on such dynamics, even though transcription and translation are observed to be important in morphogenetic systems. In particular, the influence of gene expression on a large class of Turing bifurcation models, namely those with pure kinetics such as the Gierer–Meinhardt system, is unexplored. Our investigations demonstrate that the behaviour of the Gierer–Meinhardt model profoundly changes on the inclusion of gene expression dynamics and is sensitive to the sub-cellular details of gene expression. Features such as concentration blow up, morphogen oscillations and radical sensitivities to the duration of gene expression are observed and, at best, severely restrict the possible parameter spaces for feasible biological behaviour. These results also indicate that the behaviour of Turing pattern formation systems on the inclusion of gene expression time delays may provide a means of distinguishing between possible forms of interaction kinetics. Finally, this study also emphasises that sub-cellular and gene expression dynamics should not be simply neglected in models of long range biological pattern formation via morphogens

    Vortices and dynamics in trapped Bose-Einstein condensates

    Full text link
    I review the basic physics of ultracold dilute trapped atomic gases, with emphasis on Bose-Einstein condensation and quantized vortices. The hydrodynamic form of the Gross-Pitaevskii equation (a nonlinear Schr{\"o}dinger equation) illuminates the role of the density and the quantum-mechanical phase. One unique feature of these experimental systems is the opportunity to study the dynamics of vortices in real time, in contrast to typical experiments on superfluid 4^4He. I discuss three specific examples (precession of single vortices, motion of vortex dipoles, and Tkachenko oscillations of a vortex array). Other unusual features include the study of quantum turbulence and the behavior for rapid rotation, when the vortices form dense regular arrays. Ultimately, the system is predicted to make a quantum phase transition to various highly correlated many-body states (analogous to bosonic quantum Hall states) that are not superfluid and do not have condensate wave functions. At present, this transition remains elusive. Conceivably, laser-induced synthetic vector potentials can serve to reach this intriguing phase transition.Comment: Accepted for publication in Journal of Low Temperature Physics, conference proceedings: Symposia on Superfluids under Rotation (Lammi, Finland, April 2010
    corecore