32 research outputs found

    Variation in Structure and Process of Care in Traumatic Brain Injury: Provider Profiles of European Neurotrauma Centers Participating in the CENTER-TBI Study.

    Get PDF
    INTRODUCTION: The strength of evidence underpinning care and treatment recommendations in traumatic brain injury (TBI) is low. Comparative effectiveness research (CER) has been proposed as a framework to provide evidence for optimal care for TBI patients. The first step in CER is to map the existing variation. The aim of current study is to quantify variation in general structural and process characteristics among centers participating in the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. METHODS: We designed a set of 11 provider profiling questionnaires with 321 questions about various aspects of TBI care, chosen based on literature and expert opinion. After pilot testing, questionnaires were disseminated to 71 centers from 20 countries participating in the CENTER-TBI study. Reliability of questionnaires was estimated by calculating a concordance rate among 5% duplicate questions. RESULTS: All 71 centers completed the questionnaires. Median concordance rate among duplicate questions was 0.85. The majority of centers were academic hospitals (n = 65, 92%), designated as a level I trauma center (n = 48, 68%) and situated in an urban location (n = 70, 99%). The availability of facilities for neuro-trauma care varied across centers; e.g. 40 (57%) had a dedicated neuro-intensive care unit (ICU), 36 (51%) had an in-hospital rehabilitation unit and the organization of the ICU was closed in 64% (n = 45) of the centers. In addition, we found wide variation in processes of care, such as the ICU admission policy and intracranial pressure monitoring policy among centers. CONCLUSION: Even among high-volume, specialized neurotrauma centers there is substantial variation in structures and processes of TBI care. This variation provides an opportunity to study effectiveness of specific aspects of TBI care and to identify best practices with CER approaches

    Criteria for the Onset of Vascular Murmurs

    No full text

    Deoxygenation of biobased molecules by decarboxylation and decarbonylation – a review on the role of heterogeneous, homogeneous and bio-catalysis

    No full text
    Use of biomass is crucial for a sustainable supply of chemicals and fuels for future generations. Compared to fossil feedstocks, biomass is more functionalized and requires defunctionalisation to make it suitable for use. Deoxygenation is an important method of defunctionalisation. While thermal deoxygenation is possible, high energy input and lower reaction selectivity makes it less suitable for producing the desired chemicals and fuels. Catalytic deoxygenation is more successful by lowering the activation energy of the reaction, and when designed correctly, is more selective. Catalytic deoxygenation can be performed in various ways. Here we focus on decarboxylation and decarbonylation. There are several classes of catalysts: heterogeneous, homogeneous, bio- and organocatalysts and all have limitations. Homogeneous catalysts generally have superior selectivity and specificity but separation from the reaction is cumbersome. Heterogeneous catalysts are more readily isolated and can be utilised at high temperatures, however they have lower selectivity in complex reaction mixtures. While bio-catalysts can operate at ambient temperatures, the volumetric productivity is lower. Therefore it is not always apparent in advance which catalyst is the most suitable in terms of conversion and selectivity under optimal process conditions. Here we compare classes of catalysts for the decarboxylation and decarbonylation of biobased molecules and discuss their limitations and advantages. We mainly focus on the activity of the catalysts and find there is a strong correlation between specific activity (turn over frequency) and temperature for metal based catalysts (homogeneous or heterogeneous). Thus one is not more active than the other at the same temperature. Alternatively, enzymes have a higher turnover frequency but drawbacks (low volumetric productivity) should be overcome

    Deoxygenation of biobased molecules by decarboxylation and decarbonylation – a review on the role of heterogeneous, homogeneous and bio-catalysis

    No full text
    Use of biomass is crucial for a sustainable supply of chemicals and fuels for future generations. Compared to fossil feedstocks, biomass is more functionalized and requires defunctionalisation to make it suitable for use. Deoxygenation is an important method of defunctionalisation. While thermal deoxygenation is possible, high energy input and lower reaction selectivity makes it less suitable for producing the desired chemicals and fuels. Catalytic deoxygenation is more successful by lowering the activation energy of the reaction, and when designed correctly, is more selective. Catalytic deoxygenation can be performed in various ways. Here we focus on decarboxylation and decarbonylation. There are several classes of catalysts: heterogeneous, homogeneous, bio- and organocatalysts and all have limitations. Homogeneous catalysts generally have superior selectivity and specificity but separation from the reaction is cumbersome. Heterogeneous catalysts are more readily isolated and can be utilised at high temperatures, however they have lower selectivity in complex reaction mixtures. While bio-catalysts can operate at ambient temperatures, the volumetric productivity is lower. Therefore it is not always apparent in advance which catalyst is the most suitable in terms of conversion and selectivity under optimal process conditions. Here we compare classes of catalysts for the decarboxylation and decarbonylation of biobased molecules and discuss their limitations and advantages. We mainly focus on the activity of the catalysts and find there is a strong correlation between specific activity (turn over frequency) and temperature for metal based catalysts (homogeneous or heterogeneous). Thus one is not more active than the other at the same temperature. Alternatively, enzymes have a higher turnover frequency but drawbacks (low volumetric productivity) should be overcome

    The 2007 Canadian Hypertension Education Program recommendations for the management of hypertension: Part 1 – blood pressure measurement, diagnosis and assessment of risk

    No full text
    All recommendations were graded according to strength of the evidence and were voted on by the 57 members of the Canadian Hypertension Education Program Evidence-Based Recommendations Task Force. All recommendations reported here received at least 70% consensus. These guidelines will continue to be updated annually
    corecore