11 research outputs found

    Dysferlinopathy in Switzerland: clinical phenotypes and potential founder effects.

    Get PDF
    BACKGROUND: Dysferlin is reduced in patients with limb girdle muscular dystrophy type 2B, Miyoshi myopathy, distal anterior compartment myopathy, and in certain Ethnic clusters. METHODS: We evaluated clinical and genetic patient data from three different Swiss Neuromuscular Centers. RESULTS: Thirteen patients from 6 non-related families were included. Age of onset was 18.8 ± 4.3 years. In all patients, diallelic disease-causing mutations were identified in the DYSF gene. Nine patients from 3 non-related families from Central Switzerland carried the identical homozygous mutation, c.3031 + 2 T>C. A possible founder effect was confirmed by haplotype analysis. Three patients from two different families carried the heterozygous mutation, c.1064_1065delAA. Two novel mutations were identified (c.2869 C>T (p.Gln957Stop), c.5928 G>A (p.Trp1976Stop)). CONCLUSIONS: Our study confirms the phenotypic heterogeneity associated with DYSF mutations. Two mutations (c.3031 + 2 T>C, c.1064_1065delAA) appear common in Switzerland. Haplotype analysis performed on one case (c. 3031 + 2 T>C) suggested a possible founder effect

    Microglia control small vessel calcification via TREM2.

    Get PDF
    Microglia participate in central nervous system (CNS) development and homeostasis and are often implicated in modulating disease processes. However, less is known about the role of microglia in the biology of the neurovascular unit (NVU). In particular, data are scant on whether microglia are involved in CNS vascular pathology. In this study, we use a mouse model of primary familial brain calcification, Pdgfb <sup>ret/ret</sup> , to investigate the role of microglia in calcification of the NVU. We report that microglia enclosing vessel calcifications, coined calcification-associated microglia, display a distinct activation phenotype. Pharmacological ablation of microglia with the CSF1R inhibitor PLX5622 leads to aggravated vessel calcification. Mechanistically, we show that microglia require functional TREM2 for controlling vascular calcification. Our results demonstrate that microglial activity in the setting of pathological vascular calcification is beneficial. In addition, we identify a previously unrecognized function of microglia in halting the expansion of vascular calcification

    The epileptology of Koolen-de Vries syndrome: Electro-clinico-radiologic findings in 31 patients

    Get PDF
    Item does not contain fulltextOBJECTIVE: This study was designed to describe the spectrum of epilepsy phenotypes in Koolen-de Vries syndrome (KdVS), a genetic syndrome involving dysmorphic features, intellectual disability, hypotonia, and congenital malformations, that occurs secondary to 17q21.31 microdeletions and heterozygous mutations in KANSL1. METHODS: We were invited to attend a large gathering of individuals with KdVS and their families. While there, we recruited individuals with KdVS and seizures, and performed thorough phenotyping. Additional subjects were included who approached us after the family support group brought attention to our research via social media. Inclusion criteria were genetic testing results demonstrating 17q21.31 deletion or KANSL1 mutation, and at least one seizure. RESULTS: Thirty-one individuals were studied, aged 2-35 years. Median age at seizure onset was 3.5 years, and 9 of 22 had refractory seizures 2 years after onset. Focal impaired awareness seizures were the most frequent seizure type occurring in 20 of 31, usually with prominent autonomic features. Twenty-one patients had prolonged seizures and, at times, refractory status epilepticus. Electroencephalography (EEG) showed focal/multifocal epileptiform discharges in 20 of 26. MRI studies of 13 patients were reviewed, and all had structural anomalies. Corpus callosum dysgenesis, abnormal hippocampi, and dilated ventricles were the most common, although periventricular nodular heterotopia, focal cortical dysplasia, abnormal sulcation, and brainstem and cerebellum abnormalities were also observed. One patient underwent epilepsy surgery for a lesion that proved to be an angiocentric glioma. SIGNIFICANCE: The typical epilepsy phenotype of KdVS involves childhood-onset focal seizures that are prolonged and have prominent autonomic features. Multifocal epileptiform discharges are the typical EEG pattern. Structural brain abnormalities may be universal, including signs of abnormal neuroblast migration and abnormal axonal guidance. Epilepsy surgery should be undertaken with care given the widespread neuroanatomic abnormalities; however, tumors are a rare, yet important, occurrence

    Supplementary Material for: Patupilone (Epothilone B) for Recurrent Glioblastoma: Clinical Outcome and Translational Analysis of a Single-Institution Phase I/II Trial

    No full text
    <b><i>Background:</i></b> Patients with glioblastoma (GBM) inevitably develop recurrent or progressive disease after initial multimodal treatment and have a median survival of 6–9 months from time of progression. To date, there is no accepted standard treatment for GBM relapse or progression. Patupilone (EPO906) is a novel natural microtubule-stabilizing cytotoxic agent that crosses the blood-brain barrier and has been found to have preclinical activity in glioma models. <b><i>Methods:</i></b> This is a single-institution, early-phase I/II trial of GBM patients with tumor progression who qualified for second surgery with the goal of evaluating efficacy and safety of the single-agent patupilone (10 mg/m<sup>2</sup>, every 3 weeks). Patients received patupilone 1 week prior to second surgery and every 3 weeks thereafter until tumor progression or toxicity. Primary end points were progression-free survival (PFS) and overall survival (OS) at 6 months as well as patupilone concentration in tumor tissue. Secondary end points were toxicity, patupilone concentration in plasma and translational analyses for predictive biomarkers. <b><i>Results:</i></b> Nine patients with a mean age of 54.6 ± 8.6 years were recruited between June 2008 and April 2010. Median survival and 1-year OS after second surgery were 11 months (95% CI, 5–17 months) and 45% (95% CI, 14–76), respectively. Median PFS was 1.5 months (95% CI, 1.3–1.7 months) and PFS6 was 22% (95% CI, 0–46), with 2 patients remaining recurrence-free at 9.75 and 22 months. At the time of surgery, the concentration of patupilone in tumor tissue was 30 times higher than in the plasma. Tumor response was not predictable by the tested biomarkers. Treatment was generally well tolerated with no hematological, but cumulative, though reversible sensory neuropathy grade ≤3 was seen in 2 patients (22%) at 8 months and grade 4 diarrhea in the 2nd patient (11%). Non-patupilone-related peri-operative complications occurred in 2 patients resulting in discontinuation of patupilone therapy. There were no neurocognitive changes 3 months after surgery compared to baseline. <b><i>Conclusions:</i></b> In recurrent GBM, patupilone can be given safely pre- and postoperatively. The drug accumulates in the tumor tissue. The treatment results in long-term PFS in some patients. Patupilone represents a valuable novel compound which deserves further evaluation in combination with radiation therapy in patients with GBM

    Bevacizumab plus hypofractionated radiotherapy versus radiotherapy alone in elderly patients with glioblastoma: the randomized, open-label, phase II ARTE trial.

    No full text
    The addition of bevacizumab to temozolomide-based chemoradiotherapy (TMZ/RT → TMZ) did not prolong overall survival (OS) in patients with newly diagnosed glioblastoma in phase III trials. Elderly and frail patients are underrepresented in clinical trials, but early reports suggested preferential benefit in this population. ARTE was a 2 : 1 randomized, multi-center, open-label, non-comparative phase II trial of hypofractionated RT (40 Gy in 15 fractions) with bevacizumab (10 mg/kg×14 days) (arm A, N = 50) or without bevacizumab (arm B, N = 25) in patients with newly diagnosed glioblastoma aged ≥65 years. The primary objective was to obtain evidence for prolongation of median OS by the addition of bevacizumab to RT. Response was assessed by RANO criteria. Quality of life (QoL) was monitored by the EORTC QLQ-C30/BN20 modules. Exploratory studies included molecular subtyping by 450k whole methylome and gene expression analyses. Median PFS was longer in arm A than in arm B (7.6 and 4.8 months, P = 0.003), but OS was similar (12.1 and 12.2 months, P = 0.77). Clinical deterioration was delayed and more patients came off steroids in arm A. Prolonged PFS in arm A was confined to tumors with the receptor tyrosine kinase (RTK) I methylation subtype (HR 0.25, P = 0.014) and proneural gene expression (HR 0.29, P = 0.025). In a Cox model of OS controlling for established prognostic factors, associations with more favorable outcome were identified for age &lt;70 years (HR 0.52, P = 0.018) and Karnofsky performance score 90%-100% (HR 0.51, P = 0.026). Including molecular subtypes into that model identified an association of the RTK II gene methylation subtype with inferior OS (HR 1.73, P = 0.076). Efficacy outcomes and exploratory analyses of ARTE do not support the hypothesis that the addition of bevacizumab to RT generally prolongs survival in elderly glioblastoma patients. Molecular biomarkers may identify patients with preferential benefit from bevacizumab. NCT01443676
    corecore