41 research outputs found

    HAUSGARTEN: Multidisciplinary investigations at a deep-sea, long-term observatory in the Arctic Ocean

    Get PDF
    The marine Arctic has played an essential role in the history of our planet over the past 130 million years and contributes considerably to the present functioning of Earth and its life. The global cycles of a variety of materials fundamental to atmospheric conditions and thus to life depend to a signifi cant extent on Arctic marine processes (Aargaard et al., 1999). The past decades have seen remarkable changes in key Arctic variables. The decrease of sea-ice extent and sea-ice thickness in the past decade is statistically signifi - cant (Cavalieri et al., 1997; Parkinson et al., 1999; Walsh and Chapman, 2001; Partington et al., 2003; Johannessen et al., 2004). There have also been large changes in the upper and intermediate layers of the ocean, which have environmental implications. For instance, the deep Greenland Sea has continued its decadal trend towards warmer and saltier conditions, with a corresponding decrease in oxygen content, refl ecting the lack of effective local convection and ventilation (Dickson et al., 1996; Boenisch et al., 1997). Changes in temperature and salinity and associated shifts in nutrient distributions will directly affect the marine biota on multiple scales from communities and populations to individuals, consequently altering food-web structures and ecosystem functioning (Benson and Trites, 2002; Moore, 2003; Schumacher et al., 2003; Wiltshire and Manly, 2004; Perry et al., 2005). Today, we do not know whether the severe alterations in abiotic parameters represent perturbations due to human impacts, natural long-term trends, or new equilibriums (Bengtson et al., 2004). Because Arctic organisms are highly adapted to extreme environmental conditions with strong seasonal forcing, the accelerating rate of recent climate change challenges the resilience of Arctic life (Hassol, 2004). The entire system is likely to be severely affected by changing ice and water conditions, varying primary production and food availability to faunal communities, an increase in contaminants, and possibly increased UV irradiance. The stability of a number of Arctic populations and ecosystems is probably not strong enough to withstand the sum of these factors, which might lead to a collapse of subsystems. To detect and track the impact of large-scale environmental changes in the transition zone between the northern North Atlantic and the central Arctic Ocean, and to determine experimentally the factors controlling deep-sea biodiversity, the German Alfred Wegener Institute for Polar and Marine Research (AWI) established the deepsea, long-term observatory HAUSGARTEN, representing the fi rst, and by now only, open-ocean, long-term station in a polar region

    Variations of microbial communities and substrate regimes in the eastern Fram Strait between summer and fall

    Get PDF
    Seasonal variations in day length and temperature, in combination with dynamic factors such as advection from the North Atlantic, influence primary production and the microbial loop in the Fram Strait. Here, we investigated the seasonal variability of biopolymers, microbial abundance and microbial composition within the upper 100 m during summer and fall. Flow cytometry revealed a shift in the autotrophic community from picoeukaryotes dominating in summer to a 34-fold increase of Synechococcus by fall. Furthermore, a significant decline in biopolymers concentrations covaried with increasing microbial diversity based on 16S rRNA gene sequencing along with a community shift towards fewer polymer-degrading genera in fall. The seasonal succession in the biopolymer pool and microbes indicates distinct metabolic regimes, with a higher relative abundance of polysaccharide-degrading genera in summer and a higher relative abundance of common taxa in fall. The parallel analysis of DOM and microbial diversity provides an important baseline for microbe–substrate relationships over the seasonal cycle in the Arctic Ocean

    Organic matter composition and heterotrophic bacterial activity at declining summer sea ice in the central Arctic Ocean

    Get PDF
    The Arctic Ocean is highly susceptible to climate change as evidenced by rapid warming and the drastic loss of sea ice during summer. The consequences of these environmental changes for the microbial cycling of organic matter are largely unexplored. Here, we investigated the distribution and composition of dissolved organic matter (DOM) along with heterotrophic bacterial activity in seawater and sea ice of the Eurasian Basin at the time of the record ice minimum in 2012. Bacteria in seawater were highly responsive to fresh organic matter and remineralized on average 55% of primary production in the upper mixed layer. Correlation analysis showed that the accumulation of dissolved combined carbohydrates (DCCHO) and dissolved amino acids (DAA), two major components of fresh organic matter, was related to the drawdown of nitrate. Nitrate‐depleted surface waters at stations adjacent to the Laptev Sea showed about 25% higher concentrations of DAA than stations adjacent to the Barents Sea and in the central Arctic basin. Carbohydrate concentration was the best predictor of heterotrophic bacterial activity in sea ice. In contrast, variability in sea‐ice bacterial biomass was largely driven by differences in ice thickness. This decoupling of bacterial biomass and activity may mitigate the negative effects of biomass loss due to ice melting on heterotrophic bacterial functions. Overall, our results reveal that changes in DOM production and inventories induced by sea‐ice loss have a high potential to enhance the bacterial remineralization of organic matter in seawater and sea ice of the Arctic Ocean

    Interannual variability (2000–2013) of mesopelagic and bathypelagic particle fluxes in relation to variable sea ice cover in the eastern Fram Strait

    Get PDF
    The Fram Strait connects the Atlantic and Arctic Oceans and is a key conduit for sea ice advected southward by the Transpolar Drift and northward inflow of warm Atlantic Waters. Continued sea ice decline and “Atlantification” are expected to influence pelagic–benthic coupling in the Fram Strait and Arctic as a whole. However, interannual variability and the impact of changing ice conditions on deepwater particle fluxes in the Arctic remain poorly characterized. Here, we present long-term sediment trap records (2000–2013) from mesopelagic (200 m) and bathypelagic (2,300 m) depths at two locations (HGIV and HGN) in the Fram Strait subjected to variable ice conditions. Sediment trap catchment areas were estimated and combined with remote sensing data and a high-resolution model to determine the ice cover, chlorophyll concentration, and prevailing stratification regimes. Surface chlorophyll increased between 2000 and 2013, but there was no corresponding increase in POC flux, suggesting a shift in the efficiency of the biological carbon pump. A decrease in particulate biogenic Si flux, %opal, Si:POC, and Si:PIC at mesopelagic depths indicates a shift away from diatom-dominated export as a feasible explanation. Biogenic components accounted for 72% ± 16% of mass flux at 200 m, but were reduced to 34% ± 11% at 2,300 m, substituted by a residual (lithogenic) material. Total mass fluxes of biogenic components, including POC, were higher in the bathypelagic. Biomarkers and ∂13C values suggest both lateral advection and ice-rafted material contribute to benthic carbon input, although constraining their precise contribution remains challenging. The decadal time series was used to describe two end-members of catchment area conditions representing the maximum temperatures of Atlantic inflow water in 2005 at HGIV and high ice coverage and a meltwater stratification regime at HGN in 2007. Despite similar chlorophyll concentrations, bathypelagic POC flux, Si flux, Si:POC, and Si:PIC were higher and POC:PIC was lower in the high-ice/meltwater regime. Our findings suggest that ice concentration and associated meltwater regimes cause higher diatom flux. It is possible this will increase in the future Arctic as meltwater regimes increase, but it is likely to be a transient feature that will disappear when no ice remains

    The Weddell Gyre, Southern Ocean: present knowledge and future challenges

    Get PDF
    The Weddell Gyre (WG) is one of the main oceanographic features of the Southern Ocean south of the Antarctic Circumpolar Current which plays an influential role in global ocean circulation as well as gas exchange with the atmosphere. We review the state‐of‐the art knowledge concerning the WG from an interdisciplinary perspective, uncovering critical aspects needed to understand this system's role in shaping the future evolution of oceanic heat and carbon uptake over the next decades. The main limitations in our knowledge are related to the conditions in this extreme and remote environment, where the polar night, very low air temperatures and presence of sea ice year‐round hamper field and remotely sensed measurements. We highlight the importance of winter and under‐ice conditions in the southern WG, the role that new technology will play to overcome present‐day sampling limitations, the importance of the WG connectivity to the low‐latitude oceans and atmosphere, and the expected intensification of the WG circulation as the westerly winds intensify. Greater international cooperation is needed to define key sampling locations that can be visited by any research vessel in the region. Existing transects sampled since the 1980s along the Prime Meridian and along an East‐West section at ~62°S should be maintained with regularity to provide answers to the relevant questions. This approach will provide long‐term data to determine trends and will improve representation of processes for regional, Antarctic‐wide and global modeling efforts – thereby enhancing predictions of the WG in global ocean circulation and climate

    Ballasting by cryogenic gypsum enhances carbon export in a Phaeocystis under-ice bloom

    Get PDF
    Mineral ballasting enhances carbon export from the surface to the deep ocean; however, little is known about the role of this process in the ice-covered Arctic Ocean. Here, we propose gypsum ballasting as a new mechanism that likely facilitated enhanced vertical carbon export from an under-ice phytoplankton bloom dominated by the haptophyte Phaeocystis. In the spring 2015 abundant gypsum crystals embedded in Phaeocystis aggregates were collected throughout the water column and on the sea floor at a depth below 2 km. Model predictions supported by isotopic signatures indicate that 2.7 g m-2 gypsum crystals were formed in sea ice at temperatures below -6.5 °C and released into the water column during sea ice melting. Our finding indicates that sea ice derived (cryogenic) gypsum is stable enough to survive export to the deep ocean and serves as an effective ballast mineral. Our findings also suggest a potentially important and previously unknown role of Phaeocystis in deep carbon export due to cryogenic gypsum ballasting. The rapidly changing Arctic sea ice regime might favour this gypsum gravity chute with potential consequences for carbon export and food partitioning between pelagic and benthic ecosystems.Publisher PDFPeer reviewe

    Plankton Ecology

    Get PDF

    Variability in pteropod sedimentation and corresponding aragonite flux at the Arctic deep-sea long-term observatory HAUSGARTEN in the eastern Fram Strait from 2000 to 2009

    No full text
    Pteropods are an important component of the zooplankton community and hence of the food web in the Fram Strait. They have a calcareous (aragonite) shell and are thus sensitive in particular to the effects of the increasing CO2 concentration in the atmosphere and the associated changes of pH and temperature in the ocean. In the eastern Fram Strait, two species of thecosome pteropods occur, the cold water-adapted Limacina helicina and the subarctic boreal species Limacina retroversa. Both species were regularly observed in year-round moored sediment traps at ~ 200–300 m depth in the deep-sea long-term observatory HAUSGARTEN (79°N, 4°E). The flux of all pteropods found in the trap samples varied from 50 m− 2 d− 1). This picture completely changed after 2005/6 when L. retroversa became dominant and total pteropod numbers in the trap samples increased significantly. Concomitant to this shift in species composition, a warming event occurred in 2005/6 and persisted until the end of the study in 2009, despite a slight cooling in the upper water layer after 2007/8. Sedimentation of pteropods showed a strong seasonality, with elevated fluxes of L. helicina from August to November. Numbers of L. retroversa usually increased later, during September/October, with a maximum at the end of the season during December/January. In terms of carbonate export, aragonite shells of pteropods contributed with 11–77% to the annual total CaCO3 flux in Fram Strait. The highest share was found in the period 2007 to 2009, predominantly during sedimentation events at the end of the year. Results obtained by sediment traps occasionally installed on a benthic lander revealed that pteropods also arrive at the seafloor (~ 2550 m) almost simultaneous with their occurrence in the shallower traps. This indicates a rapid downward transport of calcareous shells, which provides food particles for the deep-sea benthos during winter when other production in the upper water column is shut down. The results of our study highlight the great importance of pteropods for the biological carbon pump as well as for the carbonate system in Fram Strait at present, and indicate modifications within the zooplankton community. The results further emphasize the importance of long-term investigation to disclose such changes
    corecore