764 research outputs found
Mechanical Properties of Coronary Veins
There are several publications available and experiments were done regarding to the vessel biomechanical properties. In the range we could find in vitro and in vivo assessments data for elasticity properties. Even though we have many results in this topic we still don’t have enough data for special veins. Three coronary veins were investigated from pig’s heart. The aim of these experiments was to define and measure the longitudinal tensile stress and tensile strength of coronary veins. The tensile tests were done successfully and the tensile stress was defined in the range of 1.66-2.57 MPa
Higher Spins from Tensorial Charges and OSp(N|2n) Symmetry
It is shown that the quantization of a superparticle propagating in an N=1,
D=4 superspace extended with tensorial coordinates results in an infinite tower
of massless spin states satisfying the Vasiliev unfolded equations for free
higher spin fields in flat and AdS_4 N=1 superspace. The tensorial extension of
the AdS_4 superspace is proved to be a supergroup manifold OSp(1|4). The model
is manifestly invariant under an OSp(N|8) (N=1,2) superconformal symmetry. As a
byproduct, we find that the Cartan forms of arbitrary Sp(2n) and OSp(1|2n)
groups are GL(2n) flat, i.e. they are equivalent to flat Cartan forms up to a
GL(2n) rotation. This property is crucial for carrying out the quantization of
the particle model on OSp(1|4) and getting the higher spin field dynamics in
super AdS_4, which can be performed in a way analogous to the flat case.Comment: LaTeX, 21 page (JHEP style), misprints corrected, added comments on
the relation of results of hep-th/0106149 with hep-th/9904109 and
hep-th/9907113, references adde
User-Defined Data Distributions in High-Level Programming Languages
One of the characteristic features of today’s high performance
computing systems is a physically distributed
memory. Efficient management of locality is essential
for meeting key performance requirements for these architectures.
The standard technique for dealing with
this issue has involved the extension of traditional sequential
programming languages with explicit message passing,
in the context of a processor-centric view of
parallel computation. This has resulted in complex and
error-prone assembly-style codes in which algorithms
and communication are inextricably interwoven.
This paper presents a high-level approach to the design
and implementation of data distributions. Our
work is motivated by the need to improve the current
parallel programming methodology by introducing
a paradigm supporting the development of efficient and
reusable parallel code. This approach is currently being
implemented in the context of a new programming
language called Chapel, which is designed in the HPCS
project Cascade
Spectroscopic Pulsational Frequency Identification and Mode Determination of Gamma Doradus Star HD135825
We present the mode identification of frequencies found in spectroscopic
observations of the Gamma Doradus star HD135825. Four frequencies were
successfully identified: 1.3150 +/- 0.0003 1/d; 0.2902 +/- 0.0004 1/d; 1.4045
+/- 0.0005 1/d; and 1.8829 +/- 0.0005 1/d. These correspond to (l, m) modes of
(1,1), (2,-2), (4,0) and (1,1) respectively. Additional frequencies were found
but they were below the signal-to-noise limit of the Fourier spectrum and not
suitable for mode identification. The rotational axis inclination and vsini of
the star were determined to be 87 degrees (nearly edge-on) and 39.7 km/s
(moderate for Gamma Doradus stars) respectively. A simultaneous fit of these
four modes to the line profile variations in the data gives a reduced chi
square of 12.7. We confirm, based on the frequencies found, that HD135825 is a
bona fide Gamma Doradus star.Comment: Accepted to MNRAS 2012 March
A new method for the spectroscopic identification of stellar non-radial pulsation modes. II. Mode identification of the Delta Scuti star FG Virginis
We present a mode identification based on new high-resolution time-series
spectra of the non-radially pulsating Delta Scuti star FG~Vir (HD 106384, V =
6.57, A5V). From 2002 February to June a global Delta Scuti Network (DSN)
campaign, utilizing high-resolution spectroscopy and simultaneous photometry
has been conducted for FG~Vir in order to provide a theoretical pulsation
model. In this campaign we have acquired 969 Echelle spectra covering 147 hours
at six observatories. The mode identification was carried out by analyzing line
profile variations by means of the Fourier parameter fit method, where the
observational Fourier parameters across the line are fitted with theoretical
values. This method is especially well suited for determining the azimuthal
order m of non-radial pulsation modes and thus complementary with the method of
Daszynska-Daszkiewicz (2002) which does best at identifying the degree l. 15
frequencies between 9.2 and 33.5 c/d were detected spectroscopically. We
determined the azimuthal order m of 12 modes and constrained their harmonic
degree l. Only modes of low degree (l <= 4) were detected, most of them having
axisymmetric character mainly due to the relatively low projected rotational
velocity of FG Vir. The detected non-axisymmetric modes have azimuthal orders
between -2 and 1. We derived an inclination of 19 degrees, which implies an
equatorial rotational rate of 66 km/s.Comment: 14 pages, 26 figure
Weinberg propagator of a free massive particle with an arbitrary spin from the BFV-BRST path integral
The transition amplitude is obtained for a free massive particle of arbitrary
spin by calculating the path integral in the index-spinor formulation within
the BFV-BRST approach. None renormalizations of the path integral measure were
applied. The calculation has given the Weinberg propagator written in the
index-free form with the use of index spinor. The choice of boundary conditions
on the index spinor determines holomorphic or antiholomorphic representation
for the canonical description of particle/antiparticle spin.Comment: 31 pages, Latex, version published in Class. Quantum Gra
An asteroseismic study of the beta Cephei star 12 Lacertae: multisite spectroscopic observations, mode identification and seismic modelling
We present the results of a spectroscopic multisite campaign for the beta
Cephei star 12 (DD) Lacertae. Our study is based on more than thousand
high-resolution high S/N spectra gathered with 8 different telescopes in a time
span of 11 months. In addition we make use of numerous archival spectroscopic
measurements. We confirm 10 independent frequencies recently discovered from
photometry, as well as harmonics and combination frequencies. In particular,
the SPB-like g-mode with frequency 0.3428 1/d reported before is detected in
our spectroscopy. We identify the four main modes as (l1,m1) = (1, 1), (l2,m2)
= (0, 0), (l3,m3) = (1, 0) and (l4,m4) = (2, 1) for f1 = 5.178964 1/d, f2 =
5.334224 1/d, f3 = 5.066316 1/d and f4 = 5.490133 1/d, respectively. Our
seismic modelling shows that f2 is likely the radial first overtone and that
the core overshooting parameter alpha_ov is lower than 0.4 local pressure scale
heights.Comment: 16 pages, 11 figures, accepted in MNRA
Close-up of primary and secondary asteroseismic CoRoT targets and the ground-based follow-up observations
To optimise the science results of the asteroseismic part of the CoRoT
satellite mission a complementary simultaneous ground-based observational
campaign is organised for selected CoRoT targets. The observations include both
high-resolution spectroscopic and multi-colour photometric data. We present the
preliminary results of the analysis of the ground-based observations of three
targets. A line-profile analysis of 216 high-resolution FEROS spectra of the
delta Sct star HD 50844 reveals more than ten pulsation frequencies in the
frequency range 5-18 c/d, including possibly one radial fundamental mode (6.92
c/d). Based on more than 600 multi-colour photometric datapoints of the beta
Cep star HD180642, spanning about three years and obtained with different
telescopes and different instruments, we confirm the presence of a dominant
radial mode nu1=5.48695 c/d, and detect also its first two harmonics. We find
evidence for a second mode nu2=0.3017 c/d, possibly a g-mode, and indications
for two more frequencies in the 7-8 c/d domain. From Stromgren photometry we
find evidence for the hybrid delta Sct/gamma Dor character of the F0 star HD
44195, as frequencies near 3 c/d and 21 c/d are detected simultaneously in the
different filters.Comment: 7 pages, 6 figures, HELAS II International Conference
"Helioseismology, Asteroseismology and MHD Connections", 2008, J.Phys.: Conf.
Ser. 118, 01207
Detection of gravity modes in the massive binary V380 Cyg from Kepler spacebased photometry and high-resolution spectroscopy
We report the discovery of low-amplitude gravity-mode oscillations in the
massive binary star V380 Cyg, from 180 d of Kepler custom-aperture space
photometry and 5 months of high-resolution high signal-to-noise spectroscopy.
The new data are of unprecedented quality and allowed to improve the orbital
and fundamental parameters for this binary. The orbital solution was subtracted
from the photometric data and led to the detection of periodic intrinsic
variability with frequencies of which some are multiples of the orbital
frequency and others are not. Spectral disentangling allowed the detection of
line-profile variability in the primary. With our discovery of intrinsic
variability interpreted as gravity mode oscillations, V380 Cyg becomes an
important laboratory for future seismic tuning of the near-core physics in
massive B-type stars.Comment: 5 pages, 4 figures, 2 tables. Accepted for publication in MNRAS
Letter
Detection of frequency spacings in the young O-type binary HD 46149 from CoRoT photometry
Using the CoRoT space based photometry of the O-type binary HD46149, stellar
atmospheric effects related to rotation can be separated from pulsations,
because they leave distinct signatures in the light curve. This offers the
possibility of characterising and exploiting any pulsations seismologically.
Combining high-quality space based photometry, multi-wavelength photometry,
spectroscopy and constraints imposed by binarity and cluster membership, the
detected pulsations in HD46149 are analyzed and compared with those for a grid
of stellar evolutionary models in a proof-of-concept approach. We present
evidence of solar-like oscillations in a massive O-type star, and show that the
observed frequency range and spacings are compatible with theoretical
predictions. Thus, we unlock and confirm the strong potential of this
seismically unexplored region in the HR diagram.Comment: 11 pages, 12 figures, accepted for publication in A&
- …
