277 research outputs found

    Quantum walk approach to search on fractal structures

    Full text link
    We study continuous-time quantum walks mimicking the quantum search based on Grover's procedure. This allows us to consider structures, that is, databases, with arbitrary topological arrangements of their entries. We show that the topological structure of the database plays a crucial role by analyzing, both analytically and numerically, the transition from the ground to the first excited state of the Hamiltonian associated with different (fractal) structures. Additionally, we use the probability of successfully finding a specific target as another indicator of the importance of the topological structure.Comment: 15 pages, 14 figure

    Continuous-time quantum walk on integer lattices and homogeneous trees

    Full text link
    This paper is concerned with the continuous-time quantum walk on Z, Z^d, and infinite homogeneous trees. By using the generating function method, we compute the limit of the average probability distribution for the general isotropic walk on Z, and for nearest-neighbor walks on Z^d and infinite homogeneous trees. In addition, we compute the asymptotic approximation for the probability of the return to zero at time t in all these cases.Comment: The journal version (save for formatting); 19 page

    Ring structures and mean first passage time in networks

    Get PDF
    In this paper we address the problem of the calculation of the mean first passage time (MFPT) on generic graphs. We focus in particular on the mean first passage time on a node 's' for a random walker starting from a generic, unknown, node 'x'. We introduce an approximate scheme of calculation which maps the original process in a Markov process in the space of the so-called rings, described by a transition matrix of size O(ln N / ln X ln N / ln), where N is the size of the graph and the average degree in the graph. In this way one has a drastic reduction of degrees of freedom with respect to the size N of the transition matrix of the original process, corresponding to an extremely-low computational cost. We first apply the method to the Erdos-Renyi random graph for which the method allows for almost perfect agreement with numerical simulations. Then we extend the approach to the Barabasi-Albert graph, as an example of scale-free graph, for which one obtains excellent results. Finally we test the method with two real world graphs, Internet and a network of the brain, for which we obtain accurate results.Comment: 8 pages, 8 figure

    Survival, extinction and approximation of discrete-time branching random walks

    Full text link
    We consider a general discrete-time branching random walk on a countable set X. We relate local, strong local and global survival with suitable inequalities involving the first-moment matrix M of the process. In particular we prove that, while the local behavior is characterized by M, the global behavior cannot be completely described in terms of properties involving M alone. Moreover we show that locally surviving branching random walks can be approximated by sequences of spatially confined and stochastically dominated branching random walks which eventually survive locally if the (possibly finite) state space is large enough. An analogous result can be achieved by approximating a branching random walk by a sequence of multitype contact processes and allowing a sufficiently large number of particles per site. We compare these results with the ones obtained in the continuous-time case and we give some examples and counterexamples.Comment: 32 pages, a few misprints have been correcte

    Martin boundary of a reflected random walk on a half-space

    Full text link
    The complete representation of the Martin compactification for reflected random walks on a half-space Zd×N\Z^d\times\N is obtained. It is shown that the full Martin compactification is in general not homeomorphic to the ``radial'' compactification obtained by Ney and Spitzer for the homogeneous random walks in Zd\Z^d : convergence of a sequence of points znZd1×Nz_n\in\Z^{d-1}\times\N to a point of on the Martin boundary does not imply convergence of the sequence zn/znz_n/|z_n| on the unit sphere SdS^d. Our approach relies on the large deviation properties of the scaled processes and uses Pascal's method combined with the ratio limit theorem. The existence of non-radial limits is related to non-linear optimal large deviation trajectories.Comment: 42 pages, preprint, CNRS UMR 808

    Random walks on graphs: ideas, techniques and results

    Full text link
    Random walks on graphs are widely used in all sciences to describe a great variety of phenomena where dynamical random processes are affected by topology. In recent years, relevant mathematical results have been obtained in this field, and new ideas have been introduced, which can be fruitfully extended to different areas and disciplines. Here we aim at giving a brief but comprehensive perspective of these progresses, with a particular emphasis on physical aspects.Comment: LateX file, 34 pages, 13 jpeg figures, Topical Revie

    First Passage Properties of the Erdos-Renyi Random Graph

    Full text link
    We study the mean time for a random walk to traverse between two arbitrary sites of the Erdos-Renyi random graph. We develop an effective medium approximation that predicts that the mean first-passage time between pairs of nodes, as well as all moments of this first-passage time, are insensitive to the fraction p of occupied links. This prediction qualitatively agrees with numerical simulations away from the percolation threshold. Near the percolation threshold, the statistically meaningful quantity is the mean transit rate, namely, the inverse of the first-passage time. This rate varies non-monotonically with p near the percolation transition. Much of this behavior can be understood by simple heuristic arguments.Comment: 10 pages, 9 figures, 2-column revtex4 forma

    Quantum walks: a comprehensive review

    Full text link
    Quantum walks, the quantum mechanical counterpart of classical random walks, is an advanced tool for building quantum algorithms that has been recently shown to constitute a universal model of quantum computation. Quantum walks is now a solid field of research of quantum computation full of exciting open problems for physicists, computer scientists, mathematicians and engineers. In this paper we review theoretical advances on the foundations of both discrete- and continuous-time quantum walks, together with the role that randomness plays in quantum walks, the connections between the mathematical models of coined discrete quantum walks and continuous quantum walks, the quantumness of quantum walks, a summary of papers published on discrete quantum walks and entanglement as well as a succinct review of experimental proposals and realizations of discrete-time quantum walks. Furthermore, we have reviewed several algorithms based on both discrete- and continuous-time quantum walks as well as a most important result: the computational universality of both continuous- and discrete- time quantum walks.Comment: Paper accepted for publication in Quantum Information Processing Journa
    corecore