406 research outputs found

    Fire resistivity and toxicity studies of candidate aircraft passenger seat materials

    Get PDF
    Fire resistivity studies were conducted on a wide range of candidate nonmetallic materials being considered for the construction of improved fire resistant aircraft passenger seats. These materials were evaluated on the basis of FAA airworthiness burn and smoke generation tests, colorfastness, limiting oxygen index, and animal toxicity tests. Physical, mechanical, and aesthetic properties were also assessed. Candidate seat materials that have significantly improved thermal response to various thermal loads corresponding to reasonable fire threats as they relate to in-flight fire situations, are identified

    Release-rate calorimetry of multilayered materials for aircraft seats

    Get PDF
    Multilayered samples of contemporary and improved fire resistant aircraft seat materials (foam cushion, decorative fabric, slip sheet, fire blocking layer, and cushion reinforcement layer) were evaluated for their rates of heat release and smoke generation. Top layers (decorative fabric, slip sheet, fire blocking, and cushion reinforcement) with glass fiber block cushion were evaluated to determine which materials based on their minimum contributions to the total heat release of the multilayered assembly may be added or deleted. Top layers exhibiting desirable burning profiles were combined with foam cushion materials. The smoke and heat release rates of multilayered seat materials were then measured at heat fluxes of 1.5 and 3.5 W/sq cm. Choices of contact and silicone adhesives for bonding multilayered assemblies were based on flammability, burn and smoke generation, animal toxicity tests, and thermal gravimetric analysis. Abrasion tests were conducted on the decorative fabric covering and slip sheet to ascertain service life and compatibility of layers

    Non-perturbative dynamics of hot non-Abelian gauge fields: beyond leading log approximation

    Get PDF
    Many aspects of high-temperature gauge theories, such as the electroweak baryon number violation rate, color conductivity, and the hard gluon damping rate, have previously been understood only at leading logarithmic order (that is, neglecting effects suppressed only by an inverse logarithm of the gauge coupling). We discuss how to systematically go beyond leading logarithmic order in the analysis of physical quantities. Specifically, we extend to next-to-leading-log order (NLLO) the simple leading-log effective theory due to Bodeker that describes non-perturbative color physics in hot non-Abelian plasmas. A suitable scaling analysis is used to show that no new operators enter the effective theory at next-to-leading-log order. However, a NLLO calculation of the color conductivity is required, and we report the resulting value. Our NLLO result for the color conductivity can be trivially combined with previous numerical work by G. Moore to yield a NLLO result for the hot electroweak baryon number violation rate.Comment: 20 pages, 1 figur

    Temozolomide plus pegylated interferon alfa-2b as first-line treatment for stage IV melanoma: a multicenter phase II trial of the Dermatologic Cooperative Oncology Group (DeCOG)

    Get PDF
    Background: Combination of temozolomide (TMZ) with nonpegylated interferon alfa is associated with increased efficacy in terms of response rates compared with monotherapy. A multicenter phase II study was carried out to assess the activity and toxicity of TMZ plus pegylated interferon alfa-2b (peg-IFNα-2b), hypothesizing improved efficacy due to modified pharmacokinetic properties of the novel interferon (IFN) formulation. Patients and methods: In all, 124 patients with stage IV melanoma without prior chemotherapy and no cerebral metastases were treated with 100 μg peg-IFNα-2b s.c. per week and oral TMZ 200 mg/m2 (days 1-5, every 28 days). Primary study end point was objective response, and secondary end points were overall and progression-free survival (PFS) and safety. Results: In all, 116 patients were assessable for response: 2 (1.7%) had a complete response and 19 (16.4%) a partial response (overall response rate 18.1%). Of total, 25.0% achieved disease stabilization and 56.9% progressed. Overall survival was 9.4 months; PFS was 2.8 months. Grade 3/4 thrombocytopenia occurred in 20.7% and grade 3/4 leukopenia in 23.3%. Conclusions: The efficacy of TMZ plus peg-IFNα-2b in this large phase II study is moderate and comparable to published results of the combination of TMZ with non-peg-IFN. Likewise, the safety profile of peg-IFNα-2b seems to be similar to non-peg-IFN when combined with TM

    WormBase 2007

    Get PDF
    WormBase (www.wormbase.org) is the major publicly available database of information about Caenorhabditis elegans, an important system for basic biological and biomedical research. Derived from the initial ACeDB database of C. elegans genetic and sequence information, WormBase now includes the genomic, anatomical and functional information about C. elegans, other Caenorhabditis species and other nematodes. As such, it is a crucial resource not only for C. elegans biologists but the larger biomedical and bioinformatics communities. Coverage of core areas of C. elegans biology will allow the biomedical community to make full use of the results of intensive molecular genetic analysis and functional genomic studies of this organism. Improved search and display tools, wider cross-species comparisons and extended ontologies are some of the features that will help scientists extend their research and take advantage of other nematode species genome sequences

    Annotation of two large contiguous regions from the Haemonchus contortus genome using RNA-seq and comparative analysis with Caenorhabditis elegans

    Get PDF
    The genomes of numerous parasitic nematodes are currently being sequenced, but their complexity and size, together with high levels of intra-specific sequence variation and a lack of reference genomes, makes their assembly and annotation a challenging task. Haemonchus contortus is an economically significant parasite of livestock that is widely used for basic research as well as for vaccine development and drug discovery. It is one of many medically and economically important parasites within the strongylid nematode group. This group of parasites has the closest phylogenetic relationship with the model organism Caenorhabditis elegans, making comparative analysis a potentially powerful tool for genome annotation and functional studies. To investigate this hypothesis, we sequenced two contiguous fragments from the H. contortus genome and undertook detailed annotation and comparative analysis with C. elegans. The adult H. contortus transcriptome was sequenced using an Illumina platform and RNA-seq was used to annotate a 409 kb overlapping BAC tiling path relating to the X chromosome and a 181 kb BAC insert relating to chromosome I. In total, 40 genes and 12 putative transposable elements were identified. 97.5% of the annotated genes had detectable homologues in C. elegans of which 60% had putative orthologues, significantly higher than previous analyses based on EST analysis. Gene density appears to be less in H. contortus than in C. elegans, with annotated H. contortus genes being an average of two-to-three times larger than their putative C. elegans orthologues due to a greater intron number and size. Synteny appears high but gene order is generally poorly conserved, although areas of conserved microsynteny are apparent. C. elegans operons appear to be partially conserved in H. contortus. Our findings suggest that a combination of RNA-seq and comparative analysis with C. elegans is a powerful approach for the annotation and analysis of strongylid nematode genomes

    An intra-cerebral drug delivery system for freely moving animals

    Get PDF
    Abstract Microinfusions of drugs directly into the central nervous system of awake animals represent a widely used means of unravelling brain functions related to behaviour. However, current approaches generally use tethered liquid infusion systems and a syringe pump to deliver drugs into the brain, which often interfere with behaviour. We address this shortfall with a miniaturised electronically-controlled drug delivery system (20×17.5×5 mm 3 ) designed to be skull-mounted in rats. The device features a micropump connected to two 8-mm-long silicon microprobes with a cross section of 250×250 μm 2 and integrated fluid microchannels. Using an external electronic control unit, the device allows infusion of 16 metered doses (0.25 μL each, 8 per silicon shaft). Each dosage requires 3.375 Ws of electrical power making the device additionally compatible with state-of-the-art wireless headstages. A dosage precision of 0.25±0.01 μL was determined in vitro before in vivo tests were carried out in awake rats. No passive leakage from the loaded devices into the brain could be detected using methylene blue dye. Finally, the device was used to investigate the effects of the NMDA-receptor antagonist 3-((R)-2-Carboxypiperazin-4-yl)-propyl-1-phosphonic acid, (R)-CPP, administered directly into the prefrontal cortex of rats during performance on a task to assess visual attention and impulsivity. In agreement with previous findings using conventional tethered infusion systems, acute (R)-CPP administration produced a marked increase in impulsivity

    New and conventional strategies for lung recruitment in acute respiratory distress syndrome

    Get PDF
    Mechanical ventilation is a supportive and life saving therapy in patients with acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Despite advances in critical care, mortality remains high. During the last decade, the fact that mechanical ventilation can produce morphologic and physiologic alterations in the lungs has been recognized. In this context, the use of low tidal volumes (VT) and limited inspiratory plateau pressure (Pplat) has been proposed when mechanically ventilating the lungs of patients with ALI/ARDS, to prevent lung as well as distal organ injury. However, the reduction in VT may result in alveolar derecruitment, cyclic opening and closing of atelectatic alveoli and distal small airways leading to ventilator-induced lung injury (VILI) if inadequate low positive end-expiratory pressure (PEEP) is applied. On the other hand, high PEEP levels may be associated with excessive lung parenchyma stress and strain and negative hemodynamic effects, resulting in systemic organ injury. Therefore, lung recruitment maneuvers have been proposed and used to open up collapsed lung, while PEEP counteracts alveolar derecruitment due to low VT ventilatio

    TBC-2 Is Required for Embryonic Yolk Protein Storage and Larval Survival during L1 Diapause in Caenorhabditis elegans

    Get PDF
    C. elegans first stage (L1) larvae hatched in the absence of food, arrest development and enter an L1 diapause, whereby they can survive starvation for several weeks. The physiological and metabolic requirements for survival during L1 diapause are poorly understood. However, yolk, a cholesterol binding/transport protein, has been suggested to serve as an energy source. Here, we demonstrate that C. elegans TBC-2, a RAB-5 GTPase Activating Protein (GAP) involved in early-to-late endosome transition, is important for yolk protein storage during embryogenesis and for L1 survival during starvation. We found during embryogenesis, that a yolk::green fluorescent protein fusion (YP170::GFP), disappeared much more quickly in tbc-2 mutant embryos as compared with wild-type control embryos. The premature disappearance of YP170::GFP in tbc-2 mutants is likely due to premature degradation in the lysosomes as we found that YP170::GFP showed increased colocalization with Lysotracker Red, a marker for acidic compartments. Furthermore, YP170::GFP disappearance in tbc-2 mutants required RAB-7, a regulator of endosome to lysosome trafficking. Although tbc-2 is not essential in fed animals, we discovered that tbc-2 mutant L1 larvae have strongly reduced survival when hatched in the absence of food. We show that tbc-2 mutant larvae are not defective in maintaining L1 diapause and that mutants defective in yolk uptake, rme-1 and rme-6, also had strongly reduced L1 survival when hatched in the absence of food. Our findings demonstrate that TBC-2 is required for yolk protein storage during embryonic development and provide strong correlative data indicating that yolk constitutes an important energy source for larval survival during L1 diapause
    corecore