34 research outputs found

    Non-rigidity of spherical inversive distance circle packings

    Get PDF
    We give a counterexample of Bowers-Stephenson's conjecture in the spherical case: spherical inversive distance circle packings are not determined by their inversive distances.Comment: 6 pages, one pictur

    Modeling the Sources and Chemistry of Polar Tropospheric Halogens (Cl, Br, and I) Using the CAM-Chem Global Chemistry-Climate Model

    Get PDF
    31 pags., 12 figs., 6 tabs. -- Open Access funded by Creative Commons Atribution Licence 4.0. -- jame20925-sup-0001_Supporting_Information.pdfCurrent chemistry climate models do not include polar emissions and chemistry of halogens. This work presents the first implementation of an interactive polar module into the very short-lived (VSL) halogen version of the Community Atmosphere Model with Chemistry (CAM-Chem) model. The polar module includes photochemical release of molecular bromine, chlorine, and interhalogens from the sea-ice surface, and brine diffusion of iodine biologically produced underneath and within porous sea-ice. It also includes heterogeneous recycling of inorganic halogen reservoirs deposited over fresh sea-ice surfaces and snow-covered regions. The polar emission of chlorine, bromine, and iodine reach approximately 32, 250, and 39 Gg/year for Antarctica and 33, 271, and 4 Gg/year for the Arctic, respectively, with a marked seasonal cycle mainly driven by sunlight and sea-ice coverage. Model results are validated against polar boundary layer measurements of ClO, BrO, and IO, and satellite BrO and IO columns. This validation includes satellite observations of IO over inner Antarctica for which an iodine “leapfrog” mechanism is proposed to transport active iodine from coastal source regions to the interior of the continent. The modeled chlorine and bromine polar sources represent up to 45% and 80% of the global biogenic VSL and VSL emissions, respectively, while the Antarctic sea-ice iodine flux is ~10 times larger than that from the Southern Ocean. We present the first estimate of the contribution of polar halogen emissions to the global tropospheric halogen budget. CAM-Chem includes now a complete representation of halogen sources and chemistry from pole-to-pole and from the Earth's surface up to the stratopause.This study has been funded by the European Research Council Executive Agency under the European Union′s Horizon 2020 Research and Innovation program (Project “ERC‐2016‐COG 726349 CLIMAHAL”) and supported by the Consejo Superior de Investigaciones Científicas (CSIC) of Spain. Computing resources, support, and data storage are provided and maintained by the Computational and Information System Laboratory from the National Center of Atmospheric Research (CISL,2017). R. P. F. would like to thank CONICET, ANPCyT (PICT 2015‐0714), UNCuyo (SeCTyP M032/3853), and UTN (PID 4920‐194/2018) for the financial support. Partial funding for this work was provided by the Korea Polar Research Institute (KOPRI) project (PE18200). The contributions of the University of Bremen have been supported by the State of Bremen, the German Research Foundation (DFG), the German Aerospace (DLR), and the European Space Agency (ESA). We gratefully acknowledge the funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) —Projektnummer 268020496—TRR 172, within the Transregional Collaborative Research Center “ArctiC Amplification: Climate Relevant Atmospheric and SurfaCe Processes,and Feedback Mechanisms (AC)3 ” in subproject C03 as well as the support by the University of Bremen Institutional Strategy Measure M8 in the framework of the DFG Excellence Initiative

    Seasonality of halogen deposition in polar snow and ice

    Get PDF
    Abstract. The atmospheric chemistry of iodine and bromine in Polar regions is of interest due to the key role of halogens in many atmospheric processes, particularly tropospheric ozone destruction. Bromine is emitted from the open ocean but is enriched above first-year sea ice during springtime bromine explosion events, whereas iodine emission is attributed to biological communities in the open ocean and hosted by sea ice. It has been previously demonstrated that bromine and iodine are present in Antarctic ice over glacial–interglacial cycles. Here we investigate seasonal variability of bromine and iodine in polar snow and ice, to evaluate their emission, transport and deposition in Antarctica and the Arctic and better understand potential links to sea ice. We find that bromine and iodine concentrations and Br enrichment (relative to sea salt content) in polar ice do vary seasonally in Arctic snow and Antarctic ice. Although seasonal variability in halogen emission sources is recorded by satellite-based observations of tropospheric halogen concentrations, seasonal patterns observed in snowpack are likely also influenced by photolysis-driven processes. Peaks of bromine concentration and Br enrichment in Arctic snow and Antarctic ice occur in spring and summer, when sunlight is present. A secondary bromine peak, observed at the end of summer, is attributed to bromine deposition at the end of the polar day. Iodine concentrations are largest in winter Antarctic ice strata, contrary to contemporary observations of summer maxima in iodine emissions. These findings support previous observations of iodine peaks in winter snow strata attributed to the absence of sunlight-driven photolytic re-mobilisation of iodine from surface snow. Further investigation is required to confirm these proposed mechanisms explaining observations of halogens in polar snow and ice, and to evaluate the extent to which halogens may be applied as sea ice proxies

    Short-Lived Trace Gases in the Surface Ocean and the Atmosphere

    Get PDF
    The two-way exchange of trace gases between the ocean and the atmosphere is important for both the chemistry and physics of the atmosphere and the biogeochemistry of the oceans, including the global cycling of elements. Here we review these exchanges and their importance for a range of gases whose lifetimes are generally short compared to the main greenhouse gases and which are, in most cases, more reactive than them. Gases considered include sulphur and related compounds, organohalogens, non-methane hydrocarbons, ozone, ammonia and related compounds, hydrogen and carbon monoxide. Finally, we stress the interactivity of the system, the importance of process understanding for modeling, the need for more extensive field measurements and their better seasonal coverage, the importance of inter-calibration exercises and finally the need to show the importance of air-sea exchanges for global cycling and how the field fits into the broader context of Earth System Science

    On Refinement of Constrained Delaunay Tetrahedralizations

    No full text
    corecore