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NON-RIGIDITY OF SPHERICAL INVERSIVE DISTANCE

CIRCLE PACKINGS

JIMING MA AND JEAN-MARC SCHLENKER

Abstract. We give a counterexample of Bowers-Stephenson’s conjecture in
the spherical case: spherical inversive distance circle packings are not deter-
mined by their inversive distances.

1. Introduction

In this note we study inversive distance circle packing metrics on a surface F .

1.1. Polyhedral surface. Given a triangulated closed orientable surface F , a Eu-
clidean (resp. spherical or hyperbolic) polyhedral surface is a map l : E → R

+,
where E is the set of all edges of the triangulation, such that when e1, e2 and e3
are the three edges of a triangle, then l(e1) + l(e2) > l(e3) (it is also required that
l(e1) + l(e2) + l(e3) < 2π in the spherical case). From this l, there is a polyhedral
metric in F such that the restriction of the metric to each triangle is isometric
to a triangle in E

2 (resp. S
2 or H

2) and the length of an edge e is given by l(e).
For instance, the boundary of a generic convex polyhedron in E

3 (resp. S
3 or H3)

admits a natural polyhedral metric.
The discrete curvature k of a polyhedral surface is the map k : V → R, where

V is the set of all vertices of the triangulation, and for a vertex v ∈ V , k(v) =
2π −

∑m

i=1
θi, where θi are the angles at the vertex v.

1.2. Inversive distance circle packings. The notion of inversive distance circle
packing was introduced by Bowers-Stephenson in [1], it is a generalization of An-
dreev and Thurston’s circle packings on a surface, where two circles may intersect
or not. We just give the definition of the spherical inversive distance circle packing,
for Euclidean and hyperbolic cases, see [1] and [3] for more detailed discussions.

For two circles C1 and C2 centered at v1, v2 of radii r1 and r2 in S
2, so that v1

and v2 are of distance l apart, the inversive distance I = I(C1, C2) between them is

(1.1) I =
cos(l)− cos(r1) cos(r2)

sin(r1) sin(r2)
.

When viewed B3 as the Klein model of H3, the inversive distance is essentially
the hyperbolic distance(or the intersection angle) between the two totally geodesic
planes in H

3 with Ci as their ideal boundaries. When those planes intersect, the
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inversive distance is the cos of their angle, and if they’re disjoint, it is the cosh of
their distance.

In a triangulated surface F , a spherical inversive distance circle packing is
given as follows: fix a vector I ∈ [−1,∞)E, called the inversive distance vec-
tor. For any r ∈ (0,∞)V , called the radius vector, define the edge length by

l(e) =
√

r(u)2 + r(v)2 + 2r(u)r(v)I(e) for an edge e with u and v as its end points.
If for any triangle with e1, e2 and e3 as its three edges, we have l(e1)+ l(e2) > l(e3)
and l(e1) + l(e2) + l(e3) < 2π, then the edge length function l : E → R defines a
spherical polyhedral metric on F , which is called the spherical inversive distance
circle packing metric with inversive distance I.

The geometric meaning is that in F with this polyhedral metric, if we draw
circles with radii r at the vertices V , then the inversive distance of two circles at
the end points of an edge e is the given number I(e).

It was conjectured by Bowers and Stephenson [1] that inversive distance circle
packings have a global rigidity property: an inversive distance circle packing is
determined by its combinatoric, inversive distance vector and discrete curvature at
the vertices. Luo [3] proved Bowers-Stephenson’s conjecture in the hyperbolic and
Euclidean cases. In this note, we give a counterexample in the spherical case:

Theorem 2.4. There is a triangulation of S2 and two spherical inversive dis-
tance circle packings with the same inversive distance and discrete curvature, but
they are not Möbius equivalent.

The example we construct actually have zero discrete curvature at all vertices,
so they are inversive distance circle patterns on the (non-singular) sphere.

Acknowledgements: This work was done when the first author was visiting
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2. Proof of the theorem

The proof of our theorem uses a well-known infinitesimal flexible Euclidean poly-
hedron and the Pogorelov map which preserves the relative distances between two
points in the configurations in different geometries. We first give a rapid prelimi-
nary.

Let 〈x, y〉 = −x0y0 + x1y1 + x2y2 + x3y3 be the symmetric 2-form in the Min-
skowski space R

4
1, recall that the hyperbolic space is

(2.1) H
3 = {x ∈ R

4
1| ‖x‖

2 = −1, x0 > 0}

with the induced Riemannian metric on it, which is a hyperboloid in R
4
1. The

totally geodesic planes in H
3 are the intersections between H

3 and hyperplanes in
R

4 which pass through the origin.
Let B3 be the unit ball in R

3, then, there is a projective map pH : H3 → B3

given by ρ((x0, x1, x2, x3)) = (x1, x2, x3)/x0, which is a homeomorphism and which
maps geodesic in H

3 into geodesic in R
3. This map is the projective model (Klein

model) of the hyperbolic space.
A hyperideal hyperbolic polyhedron is the image of p−1

H
: Q ∩ B3 → H

3, where
Q is a Euclidean polyhedron in R

3 such that all vertices of Q lie out of B3 and all
edges of Q intersect with B3. For a point A in R

3−B3, consider the space A⊥ of the
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points in R
4
1 which are orthogonal to p−1

H
(A) in the symmetric 2-form. p−1

H
(A) is a

hyperbolic plane in H
3. Then take A∗ = pH(A

⊥) ∩ B3, so it is a hyperbolic plane
in the Klein model of the 3-dimensional hyperbolic space B3. Thus its boundary is
a round circle CA in ∂B3 = S2. A∗ is called the hyperbolic plane dual to A. By a
simple argument, the planes dual to two vertices A and B of Q don’t intersect. The
length of an edge of a hyperideal hyperbolic polyhedron is defined as the distance
between the dual planes.

The de Sitter space can be defined as

(2.2) S
3
1 = {x ∈ R

4
1| ‖x‖

2 = 1}

with the induced Lorentzian metric on it, which is a one-sheeted hyperboloid in R
4
1.

The totally geodesic planes in S
3
1 are the intersections of S31 with the hyperplanes

in R
4 which pass through the origin. Let

(2.3) S
3
1,+ = {x ∈ R

4
1| ‖x‖

2 = 1, x0 > 0}

be the upper de Sitter space.
As for the hyperbolic space, there is a projective map p : S31,+ → R

3 −B3 given
by ρ((x0, x1, x2, x3)) = (x1, x2, x3)/x0, which is a homeomorphism and which maps
geodesic in S

3
1,+ into geodesic in R

3.

In the projective model of S31,+, a geodesic maybe pass through B3, and if it is
the case, then the geodesic is time-like. If a geodesic does not pass through the
closure of B3, then this geodesic is space-like.

For more details on distances in the de Sitter space, see [5]: for two points x and
y in S

3
1,+, if the geodesic [x, y] is a time-like geodesic, then the distance d between

them is the negative number d such that cosh(d) = 〈x, y〉; if the geodesic [x, y] is
a space-like geodesic, the distance d between them is the unique number in i[0, π]
such that cosh(d) = 〈x, y〉.

There is a duality between points in the de Sitter space and oriented hyperplanes
in the hyperbolic 3-space: consider the projective model of the upper de Sitter space
R

3−B3, when A lies in R
3−B3, then the hyperplane A∗ constructed above viewed

as in hyperbolic 3-space is the dual of A.
When A and B are two points in R

3 − B3, such that the Euclidean line L
connecting A to B passes through B3, then the de Sitter distance between A and
B is essentially the hyperbolic distance between the two planes A∗ and B∗: let l
be the distance between A∗ and B∗ in the hyperbolic space, then l = −d. It is also
essentially the inversive distance between the two circles CA and CB, where CA and
CB are the ideal boundaries of the planes A∗and B∗ in S2 = ∂B3.

Lemma 2.1. There is a Euclidean polyhedron Q such that

(1) all vertices of Q lie out of B3,
(2) all edges of Q intersect with B3,
(3) in any neighborhood of Q, there are two Euclidean polyhedra Qt and Q−t

which have the same combinatorics as Q and the same corresponding edge
lengths.

Proof. We first recall Schönhardt’s twisted octahedron (see [8] and [2]): let ABC
be an equilateral triangle in R

3, and let L be a line that passes through the cen-
ter of ABC and it is orthogonal to the plane of the triangle. Let A0B0C0 be the
image of ABC under a screw motion with axis L and rotation angle π/2. Con-
sider a polyhedron Q bounded by triangles ABC, A0B0C0, ABC0, A0BC, AB0C,
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A0B0C, AB0C0, and A0BC0. The polyhedron Q is combinatorially isomorphic to
an octahedron, and has three edges with dihedral angles bigger than π: the edges
AB0, BC0, and CA0, see Figure 1.

B

C

B
0

C
0

A
0

A

Figure 1. Schönhardt’s twisted octahedron

This polyhedron Q is infinitesimal flexible (see [2]): there are vectors ηA0 , ηB0 ,
ηC0 in R

3 such that the polyhedron Qt with the vertices A, B, C, A0 + tηA0 , B0 +
tηB0 , C0 + tηC0 , which is a small deformation of Q, is a non-trivial infinitesimally
isometric deformation of Q, where ηA0 is a vector orthogonal to the plane A0BC of
norm 1 and pointing out from Q, and similarly for ηB0 and ηC0 . Then by a direct
calculation(or see Lemma 4.1 of [2]), the pairs of corresponding edges of Qt and
Q−t have the same lengths, for 0 < t small enough.

Let O be the center of the polyhedron Q, i.e, O lies in the line L and its distances
to the planes ABC and A0B0C0 are both equal to h > 0. Let a be the edge length
of the equilateral triangle ABC, a simple calculation shows that conditions (1) and
(2) of the lemma are equivalent to

(1) h2 + a2/3 > 1,
(2) h2 + a2/12 < 1,
(3) a2/3 < 1.

So, we can assign h = 1/2 and a a little bigger than 3/2, and the lemma follows.
�

Pogorelov [4] has found remarkable maps from S
3 × S

3 and H
3 ×H

3 to R
3 ×R

3,
see also [5], [6], [7] for other forms of these maps and their infinitesimal versions.
What we really need is the first four properties of the following proposition, we
state it along with other properties for the sake of future reference.

Proposition 2.2. There exists a map Φ : S31,+ × S
3
1,+ → R

3 × R
3 such that:

(1) Φ is a homeomorphism from S
3
1,+ × S

3
1,+ to its image in R

3 × R
3,

(2) the restriction of Φ to the diagonal △ ⊂ S
3
1,+ × S

3
1,+ is the projective map

p(its image is in the diagonal △′ ⊂ R
3 × R

3),
(3) let α be a time-orientation preserving isometry of S31, and x ∈ S

3
1,+ with

α(x) ∈ S
3
1,+, we have Φ(x, α(x)) = (y, y′) in R

3, then there is a Euclidean

isometry β such that for all x with α(x) ∈ S
3
1,+, we have y′ = β(y),

(4) if [x, y] and [x′, y′] are two time-like geodesics of the same length in S
3
1,+

, and if p1, p2 are the projections of R
3 × R

3 on the two factors, then
[p1 ◦ Φ ◦ (x, x′), p1 ◦ Φ ◦ (y, y′)] and [p2 ◦ Φ ◦ (x, x′), p2 ◦ Φ ◦ (y, y′)] are
geodesics of the same length in R

3,
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(5) if g1, g2 : [0, 1] → S
3
1,+ are space-like geodesic segments parametrized at the

same speed, then p1 ◦Φ ◦ (g1, g2) and p2 ◦Φ ◦ (g1, g2) are geodesic segments
parametrized at the same speed,

(6) there exists a point x0 = p−1(0) ∈ S
3
1,+ such that, for each 2-plane Π ⊂ S

3
1,+

containing x0,

(2.4) ∀x ∈ Π, ∀y ∈ S
3
1,+, p1 ◦ Φ(x, y) ∈ p(Π).

The proof of this proposition can be obtained by following those given by Pogorelov’s
book for the hyperbolic space or the sphere. More precisely, it is straightforward
to adapt the proof of §3 Lemmas 1-4 and §4 Theorems 1-2 in Chapter V of [4].

Or from Section 6 of [9]: in Proposition 6.3 and 6.4 of [9], we should replace
f(a, b) = (a2− b2)2−8(a2+ b2−2)(in hyperbolic case and 1 > a, b ≥ 0) to g(a, b) =
−(a2 − b2)2 + 8(a2 + b2 − 2) (in de Sitter case and 1 < a, b). Note that g(a, b) =
−(a2 − b2)2 + 8(a2 + b2 − 2) is not always positive for 1 < a, b, but this is true for
−4 < a2−b2 < 4, so {(ξ, η) ∈ (R3−B3)×(R3−B3)|−4 < |ξ|2−|η|2 < 4} ⊂ Im(Φ),
which is an open neighborhood of the diagonal of (R3−B3)× (R3−B3) ⊂ R

3×R
3.

For the proof of (3) of Proposition 2.2, we just recall that for a time-orientation
preserving isometry α of S31, in the matrix presentation A4×4 of it, the (1, 1)-entry
of A is positive, and then (3) of Proposition 2.2 follows from arguments similar to
Proposition 6.5 of [9].

For the proof of (4) of Proposition 2.2, we need the transitivity of the time-
orientation subgroup of Iso(S31) on the space of time-like geodesic segments of a
fixed length, which can be see from the duality between the de sitter space and the
hyperbolic space. From this, we have an time-orientation isometry α, such that
α([x, y]) = [x′, y′], and then (4) follows from (3). (5) is similar.

The map Φ in the Minkowski coordinate is given as follows: let (x, y) ∈ S
3
1,+ ×

S
3
1,+, where x = (x0, x1, x2, x3) and y = (y0, y1, y2, y3), then

(2.5) Φ(x, y) = 2((x1, x2, x3), (y1, y2, y3))/(x0 + y0) ∈ R
3 × R

3.

The converse Φ−1 : R3 × R
3 → S

3
1,+ × S

3
1,+ is given by

(2.6)
((ξ1, ξ2, ξ3), (η1, η2, η3)) → (ρ((4−|η|2+|ξ|2, ξ1, ξ2, ξ3)), ρ((4−|ξ|2+|η|2, η1, η2, η3))),

where ρ is the linear normalization such that ρ((4−|η|2+ |ξ|2, ξ1, ξ2, ξ3)) and ρ((4−
|ξ|2 + |η|2, η1, η2, η3)) lie in the hyperboloid S

3
1,+.

Remark 2.3. The Pogorelov’s maps in [4] and [9] are a little different, i.e, up to the
multiple constant 2, we choose the one similar to [9], which is convenient for us.

Theorem 2.4. There is a triangulation of S2 and two spherical inversive distance
circle packings with the same inversive distance and discrete curvature, but they are
not Möbius equivalent.

Proof. The triangulation of S2 is given from the boundary of the Euclidean octa-
hedron in Lemma 2.1. From Lemma 2.1, we have two Euclidean polyhedra which
have the same edge lengths, but they are not congruent, say Qt and Q−t for a fixed
t > 0 small enough, which are very near to Q. Denoted the vertices of Q by vi and
the corresponding vertices of Qt(Q−t) by vit(v

i
−t). Note that (vi, vi) ∈ Im(Φ) by

Proposition 2.2 (2), and from Proposition 2.2 (1), we can assume (vit, v
i
−t) ∈ Im(Φ).

Since Φ−1 ◦ (vi, vi) give us a polyhedron in S
3
1,+ such that each of the edges are

time-like. Then we use Proposition 2.2 (4), p1◦Φ
−1◦(vit, v

i
−t) and p2◦Φ

−1◦(vit, v
i
−t)
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give us two polyhedra, say Pt and P−t, in S
3
1,+ such that each of the edges are time-

like and which have the same corresponding edge lengths. For each vertex of Pt,
we have a circle in S2, which is the ideal boundary of the hyperbolic plane dual
to the vertex. But recall that the de Sitter length here is essentially the inversive
distance of the circles corresponding to two ideal vertices of the hyperideal hyper-
bolic polyhedra. So, we have two spherical inversive distance circle packing metrics,
they induced the same standard spherical metric in S

2, thus they have the same
discrete curvature zero. These two spherical inversive distance circle packing are
not Möbious equivalent can be seen also from the Pogorelov map.

�

Corollary 2.5. There is a hyperideal polyhedron P such that each face of it is a
triangle and in any neighborhood of P , there are two hyperideal polyhedra Pt and
P−t which have the same combinatorics and the corresponding edges of them have
the same length.

Proof. Now from Lemma 2.1, we have two Euclidean polyhedra Qt and Q−t, which
have the same edge length, but they are not congruent. Then we use Proposition
2.2, we get two polyhedra in S

3
1,+ such that each of the edges are time-like.

Such polyhedra in S
3
1,+ can be viewed as hyperideal hyperbolic polyhedra, and

the distance in the de Sitter geometry is just the distance of the circles corresponding
to two ideal vertices of the hyperideal hyperbolic polyhedra, which is the edge length
of the hyperideal hyperbolic polyhedra. �

Remark 2.6. Our polyhedra above are not convex, a similar phenomena appears in
convex hyperbolic polyhedra, but, some of the faces are not triangle, see Theorem
2’ of [6].
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