3,712 research outputs found

    Measuring the properties of extragalactic dust and implications for the Hubble diagram

    Get PDF
    Scattering and absorption of light by a homogeneous distribution of intergalactic large dust grains has been proposed as an alternative, non-cosmological explanation for the faintness of Type Ia supernovae at z\s im 0.5. We investigate the differential extinction for high-redshift sources caused by extragalactic dust along the line of sight. Future observations of Type Ia supernovae up to z2z\sim 2, e.g. by the proposed SNAP satellite, will allow the measurement of the properties of dust over cosmological distances. We show that 1% {\em relative} spectrophotometric accuracy (or broadband photometry) in the wavelength interval 0.7--1.5 μ\mum is required to measure the extinction caused by ``grey'' dust down to δm=0.02\delta m=0.02 magnitudes. We also argue that the presence of grey dust is not necessarily inconsistent with the recent measurement of the brightness of a supernova at z=1.7z=1.7 (SN 1997ff), in the absence of accurate spectrophotometric information of the supernova.Comment: Accepted by A&

    Implications of Two Type Ia Supernova Populations for Cosmological Measurements

    Full text link
    Recent work suggests that Type Ia supernovae (SNe) are composed of two distinct populations: prompt and delayed. By explicitly incorporating properties of host galaxies, it may be possible to target and eliminate systematic differences between these two putative populations. However, any resulting {\em post}-calibration shift in luminosity between the components will cause a redshift-dependent systematic shift in the Hubble diagram. Utilizing an existing sample of 192 SNe Ia, we find that the average luminosity difference between prompt and delayed SNe is constrained to be (4.5±8.9)(4.5 \pm 8.9)%. If the absolute difference between the two populations is 0.025 mag, and this is ignored when fitting for cosmological parameters, then the dark energy equation of state (EOS) determined from a sample of 2300 SNe Ia is biased at 1σ\sim1\sigma. By incorporating the possibility of a two-population systematic, this bias can be eliminated. However, assuming no prior on the strength of the two-population effect, the uncertainty in the best-fit EOS is increased by a factor of 2.5, when compared to the equivalent sample with no underlying two-population systematic. To avoid introducing a bias in the EOS parameters, or significantly degrading the measurement accuracy, it is necessary to control the post-calibration luminosity difference between prompt and delayed SN populations to better than 0.025 mag.Comment: 4 pages, 4 figures; New figures added, some old figures removed; The effect of the uncertainty in the two population model on parameter estimation discussed; Reflects version accepted for publication in Astrophys. J. Let

    Double-valuedness of the electron wave function and rotational zero-point motion of electrons in rings

    Full text link
    I propose that the phase of an electron's wave function changes by π\pi when the electron goes around a loop maintaining phase coherence. Equivalently, that the minimum orbital angular momentum of an electron in a ring is /2\hbar/2 rather than zero as generally assumed, hence that the electron in a ring has azimuthal zero point motion. This proposal provides a physical explanation for the origin of electronic `quantum pressure', it implies that a spin current exists in the ground state of aromatic ring molecules, and it suggests an explanation for the ubiquitousness of persistent currents observed in mesoscopic rings

    Hubble parameter reconstruction from a principal component analysis: minimizing the bias

    Full text link
    A model-independent reconstruction of the cosmic expansion rate is essential to a robust analysis of cosmological observations. Our goal is to demonstrate that current data are able to provide reasonable constraints on the behavior of the Hubble parameter with redshift, independently of any cosmological model or underlying gravity theory. Using type Ia supernova data, we show that it is possible to analytically calculate the Fisher matrix components in a Hubble parameter analysis without assumptions about the energy content of the Universe. We used a principal component analysis to reconstruct the Hubble parameter as a linear combination of the Fisher matrix eigenvectors (principal components). To suppress the bias introduced by the high redshift behavior of the components, we considered the value of the Hubble parameter at high redshift as a free parameter. We first tested our procedure using a mock sample of type Ia supernova observations, we then applied it to the real data compiled by the Sloan Digital Sky Survey (SDSS) group. In the mock sample analysis, we demonstrate that it is possible to drastically suppress the bias introduced by the high redshift behavior of the principal components. Applying our procedure to the real data, we show that it allows us to determine the behavior of the Hubble parameter with reasonable uncertainty, without introducing any ad-hoc parameterizations. Beyond that, our reconstruction agrees with completely independent measurements of the Hubble parameter obtained from red-envelope galaxies.Comment: Modified to match journal versio

    Brans-Dicke model constrained from Big Bang nucleosynthesis and magnitude redshift relations of Supernovae

    Full text link
    The Brans-Dicke model with a variable cosmological term (BDΛBD\Lambda) has been investigated with use of the coupling constant of ω=104\omega=10^4. Parameters inherent in this model are constrained from comparison between Big Bang nucleosynthesis and the observed abundances. Furthermore, the magnitude redshift (mzm-z) relations are studied for BDΛBD\Lambda with and without another constant cosmological term in a flat universe. Observational data of Type Ia Supernovae are used in the redshift range of 0.01<z<20.01<z<2. It is found that our model with energy density of the constant cosmological term with the value of 0.7 can explain the SNIa observations, though the model parameters are insensitive to the mzm-z relation.Comment: Submitted to A&A, 4 pages, 3 figure

    Time-dependent radiative transfer with PHOENIX

    Full text link
    Aims. We present first results and tests of a time-dependent extension to the general purpose model atmosphere code PHOENIX. We aim to produce light curves and spectra of hydro models for all types of supernovae. Methods. We extend our model atmosphere code PHOENIX to solve time-dependent non-grey, NLTE, radiative transfer in a special relativistic framework. A simple hydrodynamics solver was implemented to keep track of the energy conservation of the atmosphere during free expansion. Results. The correct operation of the new additions to PHOENIX were verified in test calculations. Conclusions. We have shown the correct operation of our extension to time-dependent radiative transfer and will be able to calculate supernova light curves and spectra in future work.Comment: 7 pages, 12 figure

    Vacuum energy and Universe in special relativity

    Full text link
    The problem of cosmological constant and vacuum energy is usually thought of as the subject of general relativity. However, the vacuum energy is important for the Universe even in the absence of gravity, i.e. in the case when the Newton constant G is exactly zero, G=0. We discuss the response of the vacuum energy to the perturbations of the quantum vacuum in special relativity, and find that as in general relativity the vacuum energy density is on the order of the energy density of matter. In general relativity, the dependence of the vacuum energy on the equation of state of matter does not contain G, and thus is valid in the limit when G tends to zero. However, the result obtained for the vacuum energy in the world without gravity, i.e. when G=0 exactly, is different.Comment: LaTeX file, 7 pages, no figures, to appear in JETP Letters, reference is adde

    On thermodynamic and quantum fluctuations of cosmological constant

    Full text link
    We discuss from the condensed-matter point of view the recent idea that the Poisson fluctuations of cosmological constant about zero could be a source of the observed dark energy. We argue that the thermodynamic fluctuations of Lambda are much bigger. Since the amplitude of fluctuations is proportional to V^{-1/2}, where V is the volume of the Universe, the present constraint on the cosmological constant provides the lower limit for V, which is much bigger than the volume within the cosmological horizon.Comment: 4 pages, version submitted to JETP Letter

    The Deepest Supernova Search is Realized in the Hubble Ultra Deep Field Survey

    Full text link
    The Hubble Ultra Deep Field Survey has not only provided the deepest optical and near infrared views of universe, but has enabled a search for the most distant supernovae to z~2.2. We have found four supernovae by searching spans of integrations of the Ultra Deep Field and the Ultra Deep Field Parallels taken with the Hubble Space Telescope paired with the Advanced Camera for Surveys and the Near Infrared Multi Object Spectrometer. Interestingly, none of these supernovae were at z>1.4, despite the substantially increased sensitivity per unit area to such objects over the Great Observatories Origins Deep Survey. We present the optical photometric data for the four supernovae. We also show that the low frequency of Type Ia supernovae observed at z>1.4 is statistically consistent with current estimates of the global star formation history combined with the non-trivial assembly time of SN Ia progenitors.Comment: 24 pages (6 figures), submitted to the Astronomical Journa

    The Rate of Type Ia Supernovae at High Redshift

    Full text link
    We derive the rates of Type Ia supernovae (SNIa) over a wide range of redshifts using a complete sample from the IfA Deep Survey. This sample of more than 100 SNIa is the largest set ever collected from a single survey, and therefore uniquely powerful for a detailed supernova rate (SNR) calculation. Measurements of the SNR as a function of cosmological time offer a glimpse into the relationship between the star formation rate (SFR) and Type Ia SNR, and may provide evidence for the progenitor pathway. We observe a progressively increasing Type Ia SNR between redshifts z~0.3-0.8. The Type Ia SNR measurements are consistent with a short time delay (t~1 Gyr) with respect to the SFR, indicating a fairly prompt evolution of SNIa progenitor systems. We derive a best-fit value of SFR/SNR 580 h_70^(-2) M_solar/SNIa for the conversion factor between star formation and SNIa rates, as determined for a delay time of t~1 Gyr between the SFR and the Type Ia SNR. More complete measurements of the Type Ia SNR at z>1 are necessary to conclusively determine the SFR--SNR relationship and constrain SNIa evolutionary pathways.Comment: 37 pages, 9 figures, accepted for publication in Astrophysical Journal. Figures 7-9 correcte
    corecore