866 research outputs found

    Weak solutions to problems involving inviscid fluids

    Full text link
    We consider an abstract functional-differential equation derived from the pressure-less Euler system with variable coefficients that includes several systems of partial differential equations arising in the fluid mechanics. Using the method of convex integration we show the existence of infinitely many weak solutions for prescribed initial data and kinetic energy

    Phage displayed peptides/antibodies recognizing growth factors and their tyrosine kinase receptors as tools for anti-cancer therapeutics.

    Get PDF
    The basic idea of displaying peptides on a phage, introduced by George P. Smith in 1985, was greatly developed and improved by McCafferty and colleagues at the MRC Laboratory of Molecular Biology and, later, by Barbas and colleagues at the Scripps Research Institute. Their approach was dedicated to building a system for the production of antibodies, similar to a naĂŻve B cell repertoire, in order to by-pass the standard hybridoma technology that requires animal immunization. Both groups merged the phage display technology with an antibody library to obtain a huge number of phage variants, each of them carrying a specific antibody ready to bind its target molecule, allowing, later on, rare phage (one in a million) to be isolated by affinity chromatography. Here, we will briefly review the basis of the technology and the therapeutic application of phage-derived bioactive molecules when addressed against key players in tumor development and progression: growth factors and their tyrosine kinase receptors

    The scaling behaviour of screened polyelectrolytes

    Full text link
    We present a field-theoretic renormalization group (RG) analysis of a single flexible, screened polyelectrolyte chain (a Debye-H\"uckel chain) in a polar solvent. We point out that the Debye-H\"uckel chain may be mapped onto a local field theory which has the same fixed point as a generalised n→1n \to 1 Potts model. Systematic analysis of the field theory shows that the system is one with two interplaying length-scales requiring the calculation of scaling functions as well as exponents to fully describe its physical behaviour. To illustrate this, we solve the RG equation and explicitly calculate the exponents and the mean end-to-end length of the chain.Comment: 6 pages, 1 figure; changed title and slight modification to tex

    Crossover from Isotropic to Directed Percolation

    Full text link
    Percolation clusters are probably the simplest example for scale--invariant structures which either are governed by isotropic scaling--laws (``self--similarity'') or --- as in the case of directed percolation --- may display anisotropic scaling behavior (``self--affinity''). Taking advantage of the fact that both isotropic and directed bond percolation (with one preferred direction) may be mapped onto corresponding variants of (Reggeon) field theory, we discuss the crossover between self--similar and self--affine scaling. This has been a long--standing and yet unsolved problem because it is accompanied by different upper critical dimensions: dcI=6d_c^{\rm I} = 6 for isotropic, and dcD=5d_c^{\rm D} = 5 for directed percolation, respectively. Using a generalized subtraction scheme we show that this crossover may nevertheless be treated consistently within the framework of renormalization group theory. We identify the corresponding crossover exponent, and calculate effective exponents for different length scales and the pair correlation function to one--loop order. Thus we are able to predict at which characteristic anisotropy scale the crossover should occur. The results are subject to direct tests by both computer simulations and experiment. We emphasize the broad range of applicability of the proposed method.Comment: 19 pages, written in RevTeX, 12 figures available upon request (from [email protected] or [email protected]), EF/UCT--94/2, to be published in Phys. Rev. E (May 1994

    Strong Deformation Effects in Hot Rotating 46Ti

    Get PDF
    Exotic-deformation effects in 46Ti nucleus were investigated by analysing the high-energy gamma-ray and the alpha-particle energy spectra. One of the experiments was performed using the charged-particle multi-detector array ICARE together with a large volume (4"x4") BGO detector. The study focused on simultaneous measurement of light charged particles and gamma-rays in coincidence with the evaporation residues. The experimental data show a signature of very large deformations of the compound nucleus in the Jacobi transition region at the highest spins. These results are compared to data from previous experiments performed with the HECTOR array coupled to the EUROBALL array, where it was found that the GDR strength function is highly fragmented, strongly indicating a presence of nuclei with very large deformation.Comment: 10 pages, 6 figures, Proceedings of the Zakopane Conference on Nuclear Physics, to be published in Acta Phys. Pol. B (2007

    Generation of human induced pluripotent stem cells (EURACi001-A, EURACi002-A, EURACi003-A) from peripheral blood mononuclear cells of three patients carrying mutations in the CAV3 gene

    Get PDF
    Caveolinopathies are a heterogeneous family of genetic pathologies arising from alterations of the caveolin-3 gene (CAV3), encoding for the isoform specifically constituting muscle caveolae. Here, by reprogramming peripheral blood mononuclear cells, we report the generation of induced pluripotent stem cells (iPSCs) from three patients carrying the ΔYTT deletion, T78K and W101C missense mutations in caveolin-3. iPSCs displayed normal karyotypes and all the features of pluripotent stem cells in terms of morphology, specific marker expression and ability to differentiate in vitro into the three germ layers. These lines thus represent a human cellular model to study the molecular basis of caveolinopathies

    Random Resistor-Diode Networks and the Crossover from Isotropic to Directed Percolation

    Full text link
    By employing the methods of renormalized field theory we show that the percolation behavior of random resistor-diode networks near the multicritical line belongs to the universality class of isotropic percolation. We construct a mesoscopic model from the general epidemic process by including a relevant isotropy-breaking perturbation. We present a two-loop calculation of the crossover exponent ϕ\phi. Upon blending the ϵ\epsilon-expansion result with the exact value ϕ=1\phi =1 for one dimension by a rational approximation, we obtain for two dimensions ϕ=1.29±0.05\phi = 1.29\pm 0.05. This value is in agreement with the recent simulations of a two-dimensional random diode network by Inui, Kakuno, Tretyakov, Komatsu, and Kameoka, who found an order parameter exponent β\beta different from those of isotropic and directed percolation. Furthermore, we reconsider the theory of the full crossover from isotropic to directed percolation by Frey, T\"{a}uber, and Schwabl and clear up some minor shortcomings.Comment: 24 pages, 2 figure

    Core-coupled states and split proton-neutron quasi-particle multiplets in 122-126Ag

    Get PDF
    Neutron-rich silver isotopes were populated in the fragmentation of a 136Xe beam and the relativistic fission of 238U. The fragments were mass analyzed with the GSI Fragment separator and subsequently implanted into a passive stopper. Isomeric transitions were detected by 105 HPGe detectors. Eight isomeric states were observed in 122-126Ag nuclei. The level schemes of 122,123,125Ag were revised and extended with isomeric transitions being observed for the first time. The excited states in the odd-mass silver isotopes are interpreted as core-coupled states. The isomeric states in the even-mass silver isotopes are discussed in the framework of the proton-neutron split multiplets. The results of shell-model calculations, performed for the most neutron-rich silver nuclei are compared to the experimental data

    Evidence for the Jacobi shape transition in hot 46Ti

    Full text link
    The gamma-rays from the decay of the GDR in 46Ti compound nucleus formed in the 18O+28Si reaction at bombarding energy 105 MeV have been measured in an experiment using a setup consisting of the combined EUROBALL IV, HECTOR and EUCLIDES arrays. A comparison of the extracted GDR lineshape data with the predictions of the thermal shape fluctuation model shows evidence for the Jacobi shape transition in hot 46Ti. In addition to the previously found broad structure in the GDR lineshape region at 18-27 MeV caused by large deformations, the presence of a low energy component (around 10 MeV), due to the Coriolis splitting in prolate well deformed shape, has been identified for the first time.Comment: 8 pages, 4 figures, proceedings of the COMEX1 conference, June 2003, Paris; to be published in Nucl. Phys.

    Contrasting properties of particle-particle and hole-hole excitations in 206Tl and 210Bi nuclei

    Get PDF
    A complete-spectroscopy investigation of low-lying, low-spin states in the one-proton-hole and one-neutron-hole nucleus 206Tl has been performed by using thermal neutron capture and \u3b3-coincidence technique with the FIPPS Ge array at ILL Grenoble. The new experimental results, together with data for the one-proton-particle and one-neutron-particle nucleus 210Bi (taken from a previous study done at ILL in the EXILL campaign), allowed for an extensive comparison with predictions of shell-model calculations performed with realistic interactions. No phenomenological adjustments were introduced in the calculations. In 210Bi, state energies, transition multipolarities and decay branchings agree well with theory for the three well separated multiplets of states which dominate the low-lying excitations. On the contrary, in 206Tl significant discrepancies are observed: in the same energy region, six multiplets were identified, with a significant mixing among them being predicted, as a consequence of the smaller energy separation between the active orbitals. The discrepancies in 206Tl are attributed to the larger uncertainties in the determination of the off-diagonal matrix elements of the realistic shell-model interaction with respect to the calculated diagonal matrix elements, the only ones playing a major role in the case of 210Bi. The work points to the need of more advanced approaches in the construction of the realistic interactions
    • …
    corecore