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Abstract: The basic idea of displaying peptides on a phage, introduced by George P. Smith 

in 1985, was greatly developed and improved by McCafferty and colleagues at the MRC 

Laboratory of Molecular Biology and, later, by Barbas and colleagues at the Scripps 

Research Institute. Their approach was dedicated to building a system for the production of 

antibodies, similar to a naïve B cell repertoire, in order to by-pass the standard hybridoma 

technology that requires animal immunization. Both groups merged the phage display 

technology with an antibody library to obtain a huge number of phage variants, each of 

them carrying a specific antibody ready to bind its target molecule, allowing, later on, rare 

phage (one in a million) to be isolated by affinity chromatography. Here, we will briefly 

review the basis of the technology and the therapeutic application of phage-derived 

bioactive molecules when addressed against key players in tumor development and 

progression: growth factors and their tyrosine kinase receptors. 
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1. Antibody Display 

Antibody molecules are commonly composed of a pair of identical heavy chain (H) and a pair of 

identical light chain (L) polypeptides, held together by disulfide bridges and non-covalent bonds in a Y 

shaped form [1]. The antigen-binding site in the molecule, that is located at the two Y tips, is the 

variable region (V) that diversifies every single molecule and is generated by the combination of  

N-terminal domains of the H and L chains in the so-called fragment antigen-binding (Fab) [2]. 

In 1988, a functional variable region, the immunoglobulin Fv fragment, was produced in 

Escherichia coli [3] and one year later Orlandi et al. demonstrated the cloning by PCR of the variable 

regions of H and L chains, starting from hybridoma cDNA [4]. From this basis came the idea of 

displaying the antibody library on a phage [5,6] and since then, the genetic information of H and L 

domains has been transcribed from B lymphocytes or pre-B lymphocytes of several species, PCR 

amplified, mutated or randomized and subsequently combined by PCR assembly or sequential cloning 

in the phagemids [7–9]. The filamentous phage commonly used for peptide/antibody display purposes 

is the single strand DNA virus M13 that presents a rod shaped structure with a circular genome of  

6407 nucleotides enclosed in approximately 2700 copies of the major coat protein P8, and capped with 

5 copies of minor coat proteins (P9, P6, P3) on the ends [9,10]. The peptides/antibodies of interest  

are mostly exposed or ―displayed‖ fused to the N-terminus of P3 (3–5 copies/phage) or P8 coat 

proteins (2700 copies/phage) [11]. Despite their abundance on the phage surface, the choice of the 

protein target depends on the size of the inserted peptide, since long aminoacidic sequences can 

interfere with physiological phage protein function. Indeed, P8 libraries can display only a six 

aminoacid peptide in a large number of copies [12], while P3 insertion can tolerate up to 43 amino acids 

without loss of phage infectivity [13]. However, several advances in engineering M13 coat proteins for 

improved performances have been made in recent years, thus providing a greater variety of N- and  

C-terminal display scaffolds, as well as artificial coat proteins to improve the stability of the genetic 

information and to increase the number of exogenous peptides exposed on the phage surface [14]. On 

the other side, several small formats of the antibody molecule that maintain the Fab site have been 

created and inserted within the phage genome [15]. These antibody fragments, either an entire Fab, a 

fragment variable (Fv) or a linker-stabilized single chain Fv (scFv), can be displayed by fusion with 

phage coat proteins [15]. Different antibody formats discussed in this review are shown in Figure 1. 

The cloning of human repertoires has led to the construction of humanized antibody libraries whose 

products can be used safely for human diagnostics and therapeutics.  

An antibody is used by the immune system to recognize and, eventually, neutralize foreign hosts 

such as bacteria, viruses, etc. Behind the idea of an antibody display is the possibility that the selected 

molecule will recognize and possibly neutralize the function of the antigen, although the same result 

could be hypothetically obtained by using a peptide. Nevertheless, the sequencing of the DNA that 

codify for the aminoacidic sequence of the variable regions of the antibody will allow its transfer, by 

molecular biology techniques, to various antibody formats, as needed. Challenging the library with the 

desired human antigen will allow the selection of the binder phages that will be eluted, amplified, and 

utilized in several cycles of selection, in order to isolate the best candidate for the following purposes. 

At the end of the procedure, the phage DNA can be sequenced to identify the inserted variable regions, 
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and, by changing the bacterial host, large amounts of soluble antibody fragment or peptide can be 

produced for further characterization [15]. 

Figure 1. Type of antibody formats, as mentioned in the text, with the relative molecular 

weight. Adapted from Holliger and Hudson [16]. 

 

2. Growth Factors and Cancer 

Growth factors play a fundamental physiological role in many cell types by driving a wide variety 

of cellular functions, including growth, differentiation, and angiogenesis. Growth factor signaling 

involves their binding to high affinity sites on the cellular surface, mostly represented by tyrosine 

kinase receptor (RTK) molecules. All RTKs have a similar molecular architecture, with ligand-binding 

domains in the extracellular region, a single transmembrane helix, and a cytoplasmic region that 

contains the tyrosine kinase (TK) domain plus additional carboxy-terminal and juxtamembrane 

regulatory regions [17]. Examples of RTKs involved in cell proliferation are shown in Figure 2. 

Although each growth factor acts in its own way, the common strategy utilized to activate RTK 

signaling involves the induction of receptor dimerization that, in turn, activates the phosphorylation of 

specific residues on the receptor intracellular tail. Phosphorylated tyrosines become docking sites for 

cytoplasmic proteins, whose binding initiate the cascade of events that leads to the activation of 

transcription factors involved in cell growth, survival, differentiation, or angiogenesis [17].  
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Figure 2. Schematic example of some tyrosine kinase growth factor receptors. Adapted 

from Lemmon and Schlessinger [17]. 

 

Cancer cells have defects in regulatory circuits that govern cell proliferation and homeostasis [18]. 

It has been suggested that cancer is the manifestation of six essential alterations in cellular physiology: 

self-sufficiency in growth signals, insensitivity to growth-inhibitory signals, evasion of apoptosis, 

limitless replicative potential, sustained angiogenesis, and tissue invasion and metastasis [18]. Tumor 

cells sustain their dysregulated proliferation in many ways: in an autocrine manner, by secreting the 

growth factors themselves and exposing the cognate receptor on cell surface or by inducing host 

stromal cells to produce the required growth stimulus [19,20]. On the other hand, receptor signaling 

can be deregulated by enhancing the number of RTKs on the cell surface, thus becoming  

hyper-responsive to unaltered growth factor availability or by mutating components of the signaling 
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cascade, leading to cell proliferation independently by the presence of receptor ligand [17].  

Over-expression and/or structural alteration of RTK family members are often associated to human 

cancers and tumor cells are known to use RTK transduction pathways to achieve tumor growth, 

angiogenesis and metastasis. Indeed, recent sequencing efforts in a wide variety of tumors have 

identified mutations in numerous RTKs, collected in the Catalogue of Somatic Mutations in Cancer 

(COSMIC) database [21]. A general overview of the association between tumor progression and the 

altered expression of growth factor/RTK axis is shown in Table 1. 

Table 1. Growth factor and RTK altered expression in different type of tumors. 

Tumor type Growth factor RTK  References 

Glioma/Glioblastoma FGF2, VEGFC EGFR [22–25] 

Head-neck squamous cell  Met, FGFR1, FGFR3, EGFR [26–28] 

Esophageal and Gastric FGF2 Met [29–31] 

Liver/Hepatocarcinoma  Met, VEGR2 [32,33] 

Colorectal FGF2, VEGFA Met, ErbB2, IGF1R [34–38] 

Lung FGF2 FGFR1, FGFR2, EGFR [39–41] 

Renal FGF2 Met, IGF1R, VEGFR2 [32,42–44] 

Prostate FGF2, FGF8 FGFR1, FGFR3, ErbB2, IGF1R [45–48] 

Bladder  FGFR3, ErbB2 [49,50] 

Ovarian  FGFR2, ErbB2, IGF1R [40,51,52] 

Breast FGF8 FGFR1, FGFR2, EGFR, ErbB2, IGF1R [40,52–55] 

Melanoma  FGFR1, FGFR2, VEGFR2 [32,56] 

Pancreatic  FGFR1 [57] 

Sarcomas  FGFR2, FGFR4, EGFR, IGF1R [58–61] 

Hematological malignancies FGF2 Met, ErbB2, FGFR1, FGFR3 [52,62–66] 

2.1. EGF Family/ERBB Family 

The ERBB family of RTKs includes the epidermal growth factor receptor (EGFR) ERBB1, also 

called HER1, and the closely related ERBB2 (HER2/Neu), ERBB3 (HER3), and ERBB4 (HER4) 

proteins. Aberrant activation by mutation or overexpression of ERBB receptors and their ligands has 

been found in many human cancers [67]. Indeed, EGFR levels are increased in many epithelial tumors, 

including head and neck, lung, breast, and colorectal cancers, and its over-expression usually correlates 

with poor clinical outcome [26,68]. Also, HER2 is frequently altered in human cancers like breast, 

ovarian, lung, and prostate carcinoma [69] and its up-regulation causes malignant transformation of 

mammary epithelial cells, breast, ovarian, lung, and prostate carcinoma. Approximately 25% of invasive 

primary breast cancers exhibit HER2 gene amplification, and this molecular feature correlates with 

reduced patient survival [70]. Targeting EGFR prevents ligand-induced receptor activation and 

downstream signaling, resulting in cell cycle arrest, promotion of apoptosis, and inhibition  

of angiogenesis [71].  
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2.2. HGF/MET 

Hepatocyte growth factor (HGF) is expressed by stromal cells while its receptor, HGFR/c-MET, is 

expressed in a variety of epithelial cells that are involved in organogenesis (lung, kidney, breast)  

or in neuronal development, muscle development, hematopoiesis and angiogenesis [72]. The  

HGF-HGFR/c-MET pathway is involved in cancer as well. Indeed, the activation of HGFR/c-MET has 

been reported to trigger cancer cell proliferation, migration and invasion and to promote tumor vessel 

angiogenesis, since HGF directly stimulates endothelial cell proliferation and migration [73–75]. 

Aberrant c-MET activation, including gene amplification, mutation, and overexpression, has been found 

in hematological malignancies and most solid tumors [76], including gastric, liver, and colon  

cancers [27,77]. In lung cancer it has been shown that, due to its cross reactivity/compensation effect 

with EGFR, HGFR/c-MET gene amplification can confer resistance to EGFR-targeting drugs. Thus, the 

targeting of HGFR/c-MET can potentially be used as a strategy for destroying refractory drug-resistant 

cancer cells [72]. 

2.3. IGFs/IGFRs 

Research and clinical studies have shown that the Insulin Growth Factor 1 Receptor (IGF1R) and its 

ligands, IGF1 and IGF2, play an essential role, not only in normal growth and development, but also in 

the development, maintenance, and progression of breast, prostate, and colon cancer [78,79]. IGF 

mitogenic signaling pathway is an attractive therapeutic target in breast cancer per se [80], since high 

IGF1R levels are associated with resistance to treatment with a monoclonal antibody (mAb) that 

selectively recognizes the extracellular domain of HER2 and is currently used in the treatment of 

ERBB2-overexpressing breast cancer [81,82]. 

2.4. VEGFs/VEGFRs 

Angiogenesis is a multistep process that results in new blood vessel formation from pre-existing 

vasculature whose regulation results from a dynamic balance between pro-angiogenic and  

anti-angiogenic factors [83]. As stated before, a pro-angiogenic switch is strictly required for tumor 

growth, invasion and metastatic dissemination [84]. Indeed, tumor cells produce growth factors that 

induce proliferation and migration of endothelial cells, such as Vascular Endothelial Growth  

Factors (VEGFs), Fibroblast Growth Factors (FGFs), Platelet-Derived Growth Factors (PDGFs)  

and angiopoietins [85]. 

The VEGF family of ligands and receptors play a central role in both physiological and pathological 

angiogenesis, and the development of VEGF antagonists is essential in anti-angiogenesis research [86]. 

The VEGF family is composed of seven members (VEGF (A–F), PlGF) that act through three 

structurally homologous tyrosine kinase receptors [VEGFR (1–3)] [87]. VEGF is a homodimeric, basic, 

45 kDa glycoprotein, specific for vascular endothelial cells [88] and its binding to VEGFR2/FLK1/KDR 

causes endothelial cell proliferation, angiogenesis, and increased vessel permeability [89,90]. Anti-

angiogenic compounds are postulated both to reduce tumor vascularization, and also to normalize 

vasculature within the tumor to allow the delivery of anti-tumor drugs [91]. Thus anti-angiogenic 

drugs specifically targeting VEGF or VEGF receptors (VEGFRs) represent a strategy for tumor 
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control and treatment [92]. Since the introduction of the first mAb approved by the Food and Drug 

Administration (FDA), humanized bevacizumab (Avastin) that neutralizes VEGF, several drugs 

targeting VEGF-related pathways have been developed [93]. Also, recombinant antibodies, including 

scFv fragments, were selected against VEGF or the VEGF-VEGFR complex [94–96]. 

2.5. FGFs/FGFRs  

FGFs represent a family of at least 22 structurally homologous polypeptide growth factors that are 

expressed in almost all tissues. FGFs have been implicated in multiple biological processes during 

embryo development, wound healing, hematopoiesis, and angiogenesis [97,98]. Among them, FGF1 

and FGF2 were identified as angiogenic factors [99,100], promoting the proliferation, migration, 

differentiation and tubulogenesis of endothelial cells in vitro and being potent stimulators of 

angiogenesis in vivo [101], thus playing an important role in tumorigenesis. FGFs interact with a 

family of four distinct, high affinity RTKs, designated FGFR1/4, whose number is greatly increased by 

the generation of alternative splicing isoforms of FGFR1, FGFR2 and FGFR3 [102,103]. FGF2, 

FGFR1, and FGFR2 have been shown to be involved in prostatic cancers [104], non-small cell lung 

carcinoma [39], and pancreatic cancers [57]. FGFR1 is widely expressed in a variety of tumor-derived 

cells and tissues and is the major Fibroblast Growth Factor Receptor (FGFR) of vascular endothelial 

cells [105]. It transduces pro-angiogenic and proliferative signals in human cancers, thus it may 

represent a target for the development of anti-angiogenic /anti-neoplastic therapies [106,107]. 

All these observations point to growth factors and their cognate RTK as pivotal targets in cancer 

therapy approaches. The aim that has been pursued in recent years with phage display libraries is the 

identification of an antibody or a peptide, recognizing either the growth factor or the receptor that can 

inhibit their interaction, thus suppressing the resulting proliferative signaling. 

Several strategies to block the mitogenic signaling pathway that is activated following ligand-receptor 

interactions are being evaluated. There are three general classes of agents that inhibit tyrosine kinase 

receptors: blocking antibodies, small kinase inhibitors, and soluble ligand traps or receptor decoys. To 

date, agents belonging to all these classes are currently available for therapeutic intervention, and are 

mainly represented by mAbs directed at the ligand-binding site in the extracellular domain of the 

receptor and low-molecular-weight inhibitors of intracellular tyrosine kinase activity [108].  

3. Preclinical Studies  

Preclinical approaches using phage display technology are mainly addressed to find and characterize 

small molecules such as antibodies and peptides with targeting and in some cases neutralizing activity 

against various members of the growth factors and receptor families. In the last decade almost all the 

main players involved in tumor growth, angiogenesis, transition processes and all the main steps of 

cancer progression have been targeted. Obviously, in cancer therapy, the ―anti-growth factor 

approach‖ addressed to block the ligand-receptor interaction represents a very promising strategy. As 

already described, growth factors mainly work through their receptors which are plasma membrane 

embedded proteins generally constituted of three basic parts: the extracellular, the transmembrane and 

the intracellular regions with functionally and spatially distinct roles. Due to their accessibility and 

also to their prominent role, receptors represent the largest group of drug targets and most of the 
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therapeutic molecules and strategies are addressed against the extracellular portion/ligand-binding  

site. The intracellular region is less accessible to peptides or small proteins, which are often too 

hydrophilic to diffuse across plasma membranes. For this reason only small chemicals, like tyrosine  

kinase inhibitors, modulate receptor function via an interaction with its intracellular  

signal-transducing region.  

Even though the targeting of a receptor can potentially block all the correlated growth factors, 

sometimes the physiological interaction with a particular ligand must be preserved. Then, specific 

growth factors become achievable targets, as they have secreted proteins available in the extracellular 

space and are often embedded in tumor stroma.  

3.1. Phages Displaying Peptides 

Phage display has been applied to isolate and characterize peptides endowed with anti-growth factor 

activities. Recently, specific EGFR binding peptides from combinatorial library selection were first 

screened and then narrowed by structure-function analysis. The most active motif necessary and 

sufficient for specific EGFR ligand binding, corresponding to EGFR 283–287 (CVRAC) was 

synthetized as retro-inverted derivative and became the preclinical prototype of choice [108]. 

Some years before, another ERBB2-avid peptide, discovered from phage display, was evaluated in 

human breast carcinoma cells and in breast carcinoma-xenografted mice for its potential to be used as 

a tumor-imaging agent and as a vehicle for specific delivery of radionuclide or cytotoxic agents for 

tumors overexpressing ERBB2 [109].  

A random dodecapeptide library was screened against the fusion protein GST-VEGFR2 (extracellular 

domains I-IV of VEGFR2 fused to glutathione S-transferase). The most active peptide that competed 

with the VEGF binding to its receptor exerted anti-angiogenic activity both in vitro (preventing human 

endothelial cell proliferation) and in vivo (in the chick embryo chorioallantoic membrane) and reduced 

tumor growth in mice [110]. Another VEGFR-binding peptide was generated by mini peptide display 

technology and, similar to the previous one, was shown to effectively interfere with tumor growth and 

metastasis due to its anti-angiogenic effects and to block intracellular signaling pathways involved in 

tumor progression [111]. Again, phage library-derived heptapeptides [112–114] that completely 

abolished VEGF binding to cell-displayed VEGFR2, showed the in vitro inhibition of VEGF-mediated 

proliferation of human vascular endothelial cells and a suppression of VEGF-induced angiogenesis in 

a rabbit corneal model [114].  

Also, the FGF2/FGFR pathway has been targeted and inhibited by synthetic peptides. Peptides were 

selected for their binding affinity to anti-FGF2 antibodies, thus suggesting structural similarity with 

FGFR. This ―mirror‖ characteristic revealed peptides able to bind and neutralize FGF2. These selected 

hexapeptides inhibited binding of FGF2 to its high-affinity receptor, and suppressed basal and  

FGF2-induced proliferation of vascular endothelial cells at submicromolar concentrations [107]. 

Many other peptides are in preclinical development but, unfortunately, their binding affinities are, 

in general, too low to support their therapeutic use [115]. This is especially true for antagonistic 

peptides, which need to occupy at least half of the ligand/receptor interaction site to produce an 

inhibitory effect. Nevertheless, these targeting peptides can be used to design peptido-mimetic 
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molecules or further improved versions, which are more effective in targeting specific cells or tissues 

when conjugated with therapeutic or diagnostic agents [116,117]. 

3.2. Phages Displaying Antibodies  

The wider class of phage display-derived molecules is certainly represented by antibody fragments, 

which can be easily exploited for their targeting or neutralizing properties. By the way, neutralizing 

antibodies do not necessarily recognize the exact receptor-binding epitope of the ligand but may  

block the ligand-receptor interaction by binding to sites proximal to these regions and sterically 

prevent their interaction. 

There are many examples of anti-growth factor receptor antibodies in the preclinical field, isolated 

from phage display libraries. The first one, a scFv, has been selected from a library whose repertoire 

was derived from spleen cells of mice immunized with a soluble form of human VEGFR2/KDR [118]. 

This antibody fragment was shown to inhibit VEGF-induced KDR phosphorylation and  

VEGF-stimulated DNA synthesis in human umbilical vein endothelial cells (HUVEC) [118]. Similarly, 

two other scFvs significantly suppressed the mitogenic response of HUVEC to recombinant human 

VEGF in a dose-dependent manner and reduced VEGF-dependent cell proliferation by 60% and 40%, 

respectively. In vivo analysis of these recombinant antibodies in a rat cornea angiogenesis model 

revealed that both antibodies suppressed the development of new corneal vessels [119]. 

Single-domain antibodies in VHH format, specific for FGFR1, were isolated from a phage-display 

llama naïve library. Two populations of competitive antibodies were identified and both of them, 

although recognizing distinct epitopes, specifically labeled receptor-expressing cells in 

immunofluorescence. Antibodies from both populations effectively prevented FGF-dependent 

internalization and nuclear accumulation of the receptor in cultured cells [120]. Another scFv antibody 

(RR-C2) specifically recognized FGFR1α and FGFR1β with a K(d) value of 300 and 144 nmol/L for 

the two receptor isoforms, respectively [106]. The antibody fragment also recognized FGFR1 when the 

receptor was exposed on the cell surface, prevented the formation of the ternary complex among 

FGFR1, its ligand FGF2, and cell surface heparan sulfate proteoglycans, and inhibited FGF2-mediated 

mitogenic activity in endothelial cells of different origin in a nanomolar range of concentrations [106]. 

In vivo, this anti-FGFR1 scFv hampered the angiogenic activities exerted by FGF2 in the chick  

embryo chorioallantoic membrane assay and by an FGF-dependent breast cancer cell line in  

Matrigel assay [106].  

Different approaches in this preclinical field include the generation and characterization of stable 

Ig-like bispecific antibodies (BsAb) that target two antigens at the same time. The BsAb molecule  

EI-04 was constructed with a scFv against IGF1R attached to the carboxyl-terminus of an IgG against 

EGFR. EI-04 binds to human EGFR and IGF1R with sub-nanomolar affinity, co-engages the two 

receptors simultaneously and blocks the binding of their respective ligands with potency similar to the 

parental mAbs. Because of its double inhibition, an enhanced in vivo anti-tumor efficacy over the 

parental mAbs has been shown in two xenograft models [121]. Indeed, in a targeting/drug delivery 

perspective some scFvs antibodies were also generated that specifically bind to c-MET protein, as 

aberrantly expressed c-MET has been implicated in human lung cancer as well as malignancy, 

metastasis, and drug-resistance in other human cancers. The anti-c-MET scFv showed a selective 
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binding and internalization in several lung cancer cell lines expressing c-MET and in vivo fluorescent 

imaging by scFv-conjugated quantum dots showed higher tumor uptake and increased tumor to normal 

tissue ratios [122]. In addition, conjugation of scFv with PEGylated liposomes enabled higher delivery 

of doxorubicin into tumor, thus enhancing its cytotoxic activity [122]. Indeed, several other drugs have 

been conjugated to scFv in order to enhance their therapeutic potential such as the tubulin polymerization 

inhibitor monomethylauristatin [123], the potent cytotoxic agent DM1 [124], and alpha-amanitin, a 

toxin known to inhibit DNA transcription [125]. 

Regardless of the huge amount of potential candidates, only a restricted number of molecules enter 

clinical trial screening. In the last decade, phage display has become an interesting and increasing 

source of such candidates. Despite the availability of the XenoMouse model, a mouse genetically 

engineered with a ―humanized‖ humoral immune system [126], humanized phage-display technology 

is the preferred choice of many companies for the ease of use and for the speed of isolation of the 

molecules of interest [127]. To date, this technology has been used to create at least 35 human mAbs 

that entered clinical development, mainly applied in oncology or as immunomodulatory drugs. 

4. Clinical Studies 

In the last decade, 45% of total mAb candidates for clinical use were derived from human 

repertoires and many others are actually in clinical development. So far, several human mAbs have 

been approved by the FDA for marketing in the United States: adalimumab (Humira; Abbott) [128] 

and golimumab (Simponi; Centocor) [129], for the treatment of rheumatoid arthritis, psoriatic arthritis, 

ankylosing spondylitis, Crohn’s disease, moderate-to-severe chronic psoriasis and juvenile idiopathic 

arthritis; panitumumab (Vectibix; Amgen) to treat EGFR-expressing metastatic colorectal cancer [130]; 

canakinumab (Ilaris; Novartis), indicated for the treatment of cryopyrin-associated periodic  

syndromes [131]; ustekinumab (Stelara; Johnson & Johnson), used to treat moderate to severe plaque 

psoriasis and under investigation for multiple sclerosis, psoriatic arthritis and sarcoidosis [132]; 

ofatumumab (Arzerra; Genmab), for treating chronic lymphocytic leukemia, refractory to 

fludarabine/alemtuzumab, and also useful in treating follicular non-Hodgkin’s lymphoma, diffuse large 

B cell lymphoma, rheumatoid arthritis and relapsing remitting multiple sclerosis [133]; denosumab 

(Prolia; Amgen), approved for use in postmenopausal women with a risk of osteoporosis and for the 

prevention of skeletal-related events in patients with bone metastases from solid tumors [134]; and the 

recently approved belimumab, (Human Genome Sciences) for the treatment of systemic lupus 

erythematosus [135] and ipilimumab (Bristol-Myers Squibb) for the treatment of melanoma [136], that 

is also undergoing clinical trials for the treatment of non-small cell lung carcinoma and metastatic 

hormone-refractory prostate cancer [137]. Moreover, Human Genome Sciences received Biologics 

License Application from the FDA for raxibacumab, intended for the prophylaxis and treatment of 

inhaled anthrax [138]. 

As reported, the field of clinical application for these antibodies is predominantly autoimmunity and 

inflammatory pathologies followed by cancer therapy. Notably, and despite the central and pleiotropic 

role of growth factors in cancer biology, only a restricted number of antibodies that entered clinical 

trials are directed against growth factors and their receptors. For sure, the academic and preclinical 

effort in growth factor targeting has increased in recent years and many novel candidates are in 
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preclinical validation, waiting for clinical development. Among them, phage-derived compounds 

represent an emerging category that, in terms of number of candidate identifications, is possibly 

overcoming other technologies such as chimerization or humanization processes, and XenoMouse 

platform. As companies mainly own phage display libraries, the preclinical process is often well 

documented on peer-reviewed original articles while less information is available on the following 

refinement process performed mainly by private institutions. 

Based on these considerations, we tried to provide an overview on the ongoing clinical studies 

based on human antibodies derived from phage display and conceived as growth factors/receptors 

targeting agents [139]. To date, some phage derivatives against these classes of targets are in clinical 

evaluation, among them: IMC-A12, IMC-11F8, IMC1121b and IMC-3C5 (by ImClone), AMG-479 

(by Amgen), VGX100 (by Circadian Technologies Ltd). A brief summary of their main properties is 

reported in Table 2. 

Table 2. Brief summary of phage derivatives in clinical evaluation. 

Molecule Company Commercial name Target Ref 

IMC-A12 ImClone LLC Cixutumumab IGF1R [140,141] 

AMG-479 Amgen Ganitumab IGF1R [142–144] 

IMC-11F8 ImClone LLC Necitumumab EGFR [139,145,146] 

IMC-1121b ImClone LLC Ramucirumab VEGFR2 [32,147] 

IMC-3C5 ImClone LLC - VEGFR3 [145,148–150] 

VGX-100 Circadian Technologies Ltd Fresolimumab VEGFC [151] 

4.1. IMC-A12 (Cixutumumab) 

It is a recombinant fully human IgG1 mAb that specifically targets the human IGF1R. IMC-A12 

binds with high affinity to the IGF1R, inhibits ligand-dependent receptor activation and downstream 

signaling. IMC-A12 also mediates robust internalization and degradation of the IGF1R. Although 

promising single-agent activity has been observed, the most impressive effects of targeting the IGF1R 

with IMC-A12 have been noted when this molecule was combined with cytotoxic agents or other 

targeted therapeutics [140]. In a randomized phase II study IMC-A12 was tested alone and in 

combination with Cetuximab in patients with metastatic colorectal cancer, refractory to anti-EGFR 

mAb. In both combinations, results were insufficient to warrant additional study in patients [141].  

In 2010, a phase II clinical trial began and is still ongoing for the use of IMC-A12 in patients who had 

chemotherapy-treated mesothelioma (ClinicalTrials.gov Identifier: NCT01160458). 

4.2. IMC-11F8 (Necitumumab) 

It is a fully human IgG1 mAb against the EGFR with antitumor potency similar to the chimeric 

Cetuximab/Erbitux and might represent a safer therapeutic alternative [145]. IMC-11F8 specifically 

blocks the receptor/ligand interaction and is intended for the treatment of solid tumors, such as 

colorectal cancer, by inducing tumor-specific cell death. IMC-11F8 was evaluated in phase II clinical 

trial for colorectal cancer therapy and the results were well-tolerated, associated with preliminary 

evidence of antitumor activity, achieving biologically-relevant concentrations throughout the dosing 
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period [146]. Also, bispecific antibodies obtained, combining IMC-A12 and IMC-11F8, were reported 

but have not entered the clinic yet [139]. 

4.3. IMC-1121b (Ramucirumab)  

It is a human IgG1 mAb that specifically recognizes with high affinity (50 pM) the extracellular 

VEGF-binding domain of the VEGFR2 [32]. IMC-1121b prevents neo-angiogenesis in solid tumors by 

inhibiting and blocking VEGFR2, similarly to the FDA-approved antibody bevacizumab (Avastin) that 

targets VEGF itself. Nevertheless, in contrast to other agents directed against the VEGFR2/VEGF axis, 

ramucirumab binds a specific epitope on the extracellular domain of VEGFR2, thereby blocking all 

VEGF ligands from binding to this therapeutically-validated target [147]. IMC-1121b is currently in 

phase II clinical trial for the treatment of metastatic malignant melanoma, metastatic renal cell 

carcinoma, and liver cancer. Recently, in a pharmacologic and biologic study of phase I, patients with 

advanced solid malignancies were treated once a week with escalating doses of ramucirumab. At the 

end of the study, anti-angiogenic effects and anti-tumor activity were observed over a wide range of 

dose levels, suggesting that ramucirumab may have a favorable therapeutic index in treating 

malignancies amenable to VEGFR2 inhibition [32].  

4.4. IMC-3C5  

It is a fully human mAb that specifically binds to and hampers VEGFR3 signaling, thus inhibiting 

angiogenesis and decreasing tumor nutrient supply [145]. Target selectivity is guaranteed by the fact 

that VEGFR3 plays a critical role in the embryonic vascular system development but its expression is 

postnatally restricted to the endothelial cells of lymphatic vessels [148]. Recent studies have shown 

that VEGFR3 is expressed in many solid and hematologic malignancies, because of its involvement in 

the tumor-associated lymphangiogenesis process [149,150], making the molecule a strong candidate 

for anti-tumor therapy. Indeed, a phase I study that began in 2011 will examine the safety and 

tolerability of escalating doses of IMC-3C5 in patients with advanced solid tumors that are refractory 

to standard therapy or for which no standard therapy is available (ClinicalTrials.gov  

Identifier: NCT01288989).  

4.5. AMG-479 (Ganitumab)  

It is an IgG1 mAb that binds to and blocks IGF1R [142], initially characterized for its therapeutic 

activity on pancreatic carcinoma cells in vitro and in xenograft models [142]. Ganitumab successfully 

demonstrated good pharmacokinetic and pharmacodynamic characteristics in a phase I trial [143] and 

then entered a small, randomized, placebo-controlled phase II study where the combination with 

AMG-479/gemcitabine (a nucleoside analog used in chemotherapy) improved overall survival at six 

months (primary endpoint) and progression-free survival in patients with metastatic pancreatic cancer 

(Poster Discussion at the 2010 American Society of Clinical Oncology Annual Meeting) [144]. This 

promising candidate is now moving into phase III testing in this patient population. 
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4.6. VGX-100 (Fresolimumab)  

It is a human antibody, developed by Circadian Technologies Ltd. that acts against one of the 

VEGFR3 ligands: the human VEGFC. As VEGFC has a specific role in causing new lymphatic vessel 

development, its blockade in tumors may slow cancer metastasis. Treatment for cancers, particularly 

glioblastoma and metastatic colorectal cancers, are the first target indications for VGX-100. 

Additionally, Circadian is developing VGX-100 for a number of other cancer indications, as well as an 

agent to treat front-of the-eye diseases [151]. In 2012 a phase I study will examine the safety and 

tolerability of escalating doses of VGX-100 in patients with advanced metastatic solid tumors who 

have no other standard treatment options both as a immunotherapy and also when used in combination 

with other anti-angiogenic agents such as bevacizumab (ClinicalTrials.gov Identifier: NCT01514123).  

By means of phage display technology, the effortless identification of the amino acid sequence of 

the isolated phage has allowed the in vitro construction of several functional antibodies, carrying the 

identified antigen-binding site to be used as cancer targeting agents. In addition to what we described 

in this review, two further comments can point up the ongoing beliefs for cancer treatment: the 

complexity of tumor pathology needs a multitarget approach and, where possible, antibody 

conjugation. The established idea is that the simultaneous inhibition of angiogenesis, cancer cells and 

possibly the tumor supporting stroma would gain better results in fighting the disease. To this purpose 

several antibodies derived from phage display, targeting tumor overexpressed cytokines  

(e.g., GC-1008, an anti-Transforming Growth Factor β cytokine [152]), tumor stromal antigens  

(e.g., L19, an anti-isoform B of fibronectin [153]), or tumor-associated antigens (e.g., adecatumumab, 

that recognize epithelial cell-adhesion molecules [154]) are currently in clinical trials. Furthermore, 

once the target is really narrowed by the antigen recognition property of the antibody, the conjugation 

of the latter with cytotoxic or immunomodulatory drugs will strongly increase the therapeutic benefit 

for patients while reducing systemic drug toxicity [155]. 

In conclusion, antibody displayed on phage particles has become a milestone technique for the 

development of humanized therapeutics. Starting from laboratory bench, a lot of promising anti-cancer 

molecules recognizing growth factors and their TK receptors have been isolated, sequenced, and 

transferred to various antibody formats up to the bedside of patients. It should be pointed out that the 

improvements of this technology in combination with the study of the proteome of tumor/cancer cells 

would greatly increase the number and efficacy of these therapeutic molecules. 
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