777 research outputs found

    A Search For Supernova Remnants in The Nearby Spiral Galaxy M74 (NGC 628)

    Get PDF
    We have identified nine new SNR candidates in M74 with [S II]/Hα\alpha ≥\geq 0.4 as the basic criterion. We obtain [S II]/Hα\alpha ratio in the range from 0.40 to 0.91 and Hα\alpha intensities from 2.8 ×\times 10−1510^{-15} erg cm−2^{-2} s−1^{-1} to 1.7 ×\times 10−1410^{-14} erg cm−2^{-2} s−1^{-1}. We also present spectral follow-up observations of the SNR candidates and can confirm only three of them (SNR2, SNR3, and SNR5). The lack of confirmation for the rest might be due to the contamination by the nearby H II emission regions as well as due to the inaccurate positioning of the long slit on these objects. In addition, we search the ChandraChandra Observatory archival data for the X-ray counterparts to the optically identified candidates. We find positional coincidence with only three SNR candidates, SNR1, SNR2, and SNR8. The spectrum of SNR2 yields a shock temperature of 10.8 keV with an ionization timescale of 1.6 ×\times 1010^{10} s cm−3^{-3} indicating a relatively young remnant in an early Sedov phase which is not supported by our optical wavelength analysis. Given the high luminosity of 1039^{39} erg s−1^{-1} and the characteristics of the X-ray spectrum, we favor an Ultra Luminous X-ray Source interpretation for this source associated with an SNR. We calculate an X-ray flux upper limit of 9.0 ×\times 10−1510^{-15} erg cm−2^{-2} s−1^{-1} for the rest of the SNRs including spectroscopically identified SNR3 and SNR5.Comment: 10 pages, 8 figures, accepted to be published in A&

    Job Analysis System for Civil Engineers in Construction Companies

    Get PDF
    Job research and analysis studies are the reports that detail the system andenvironmental conditions and performance of each job for obtaining higher efficiency andreducing the unit cost. In order to do the job analysis properly, information and data regardingthe job have to be evaluated accurately and realistically. The originating point of the article isbased on this definition and requirement. In the study, the established job analysis model hasbeen built on system approach. Steps of the model consist of input-preliminary preparation,process-analysis and conclusion phases.In accordance with the model suggested, a job analysis form has been developed to beused in improvement of functions of various human resources and in selection of civil engineersat manager position of construction companies during the study. The form specifies the jobprofile and personal requirements of civil engineers and gives information about time researchstudies aimed at efficiency. Form data has been collected by interviewing 50 (fifty) civilengineers at manager position working at large and medium sized construction firms, in order tobe used in job analysis discipline. In the study, information and data obtained by job analysisform have been analyzed by statistical methods and the results have been compared to similarliterature findings

    Violet to deep-ultraviolet InGaN/GaN and GaN/AIGaN quantum structures for UV electroabsorption modulators

    Get PDF
    Cataloged from PDF version of article.In this paper, we present four GaN based polar quantum structures grown on c-plane embedded in p-i-n diode architecture as a part of high-speed electroabsorption modulators for use in optical communication (free-space non-line-of-sight optical links) in the ultraviolet (UV): the first modulator incorporates similar to 4-6 nm thick GaN/AlGaN quantum structures for operation in the deep-UV spectral region and the other three incorporate similar to 2-3 nm thick InGaN/GaN quantum structures tuned for operation in violet to near-UV spectral region. Here, we report on the design, epitaxial growth, fabrication, and characterization of these quantum electroabsorption modulators. In reverse bias, these devices exhibit a strong electroabsorption (optical absorption coefficient change in the range of 5500-13 000 cm(-1) with electric field swings of 40-75 V/mu m) at their specific operating wavelengths. In this work, we show that these quantum electroabsorption structures hold great promise for future applications in ultraviolet optoelectronics technology such as external modulation and data coding in secure non-line-of-sight communication systems. (C) 2007 American Institute of Physics

    Photon Propagation Around Compact Objects and the Inferred Properties of Thermally Emitting Neutron Stars

    Get PDF
    Anomalous X-ray pulsars, compact non-pulsing X-ray sources in supernova remnants, and X-ray bursters are three distinct types of sources for which there are viable models that attribute their X-ray emission to thermal emission from the surface of a neutron star. Inferring the surface area of the emitting regions in such systems is crucial in assessing the viability of different models and in providing bounds on the radii of neutron stars. We show that the inferred areas of the emitting regions may be over- or under-estimated by a factor of <=2, because of the geometry of the system and general relativistic light deflection, combined with the effects of phase averaging. Such effects make the determination of neutron-star radii uncertain, especially when compared to the ~5% level required for constraining the equation of state of neutron-star matter. We also note that, for a given spectral shape, the inferred source luminosities and pulse fractions are anticorrelated because they depend on the same properties of the emitting regions, namely their sizes and orientations, i.e., brighter sources have on average weaker pulsation amplitudes than fainter sources. We argue that this property can be used as a diagnostic tool in distinguishing between different spectral models. As an example, we show that the high inferred pulse fraction and brightness of the pulsar RXS J1708-40 are inconsistent with isotropic thermal emission from a neutron-star surface. Finally, we discuss the implication of our results for surveys in the soft X-rays for young, cooling neutron stars in supernova remnants and show that the absence of detectable pulsations from the compact source at the center of Cas A (at a level of >=30%) is not a strong argument againts its identification with a spinning neutron star.Comment: 6 pages, 6 figures, to appear in the Astrophysical Journal; minor change

    Interactions mechanism of commonly used drugs for the treatment of Covid-19

    Get PDF
    In this study conformation analysis of seven drugs commonly used in the treatment of COVID-19 was performed. The most stable conformers of the drug molecules were used as initial data for docking analysis. Using the Cavityplus program, the probable most active binding sites of both apo and holo forms of COVID-19 main protease enzyme (Mpro) and spike glycoprotein of SARSCoV-2 receptors were determined. The interaction mechanisms of the 7 FDA approved drugs (arbidol, colchicine, dexamethasone, favipiravir, galidesivir, hydroxychloroquine, remdesivir) were examined using the AutoDock Vina program. The six of the seven drugs were found to be more stable in binding to apo form of COVID-19 Mpro and spike glycoprotein. Moreover, a set of molecular mechanics (MM) Poisson-Boltzmann (PB) surface area (SA) calculations on the investigated drugs-protein systems were performed and the estimated binding free energy of remdesivir and the apo form of Mpro system was found to be the best. The interaction results of FDA drugs with the apo form of COVID-19 Mpro and spike glycoprotein can play an important role for the treatment of COVID-19. &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; KEY WORDS: COVID-19, Drugs, Molecular modelling, Conformational analysis, Molecular docking &nbsp; Bull. Chem. Soc. Ethiop. 2020, 34(3), 613-623. DOI: https://dx.doi.org/10.4314/bcse.v34i3.1

    Observation of Selective Plasmon-Exciton Coupling in Nonradiative Energy Transfer: Donor-Selective versus Acceptor-Selective

    Get PDF
    Cataloged from PDF version of article.We report selectively plasmon-mediated nonradiative energy transfer between quantum dot (QD) emitters interacting with each other via Forster-type resonance energy transfer (FRET) under controlled plasmon coupling either to only the donor QDs (i.e., donor-selective) or to only the acceptor QDs (i.e., acceptor-selective). Using layer-by-layer assembled colloidal QD nanocrystal solids with metal nanoparticles integrated at carefully designed spacing, we demonstrate the ability to enable/disable the coupled plasmon-exciton (plexciton) formation distinctly at the donor (exciton departing) site or at the acceptor (exciton feeding) site of our choice, while not hindering the donor exciton-acceptor exciton interaction but refraining from simultaneous coupling to both sites of the donor and the acceptor in the FRET process.. In the case of donor-selective plexciton, we observed a substantial shortening in the donor QD lifetime from 1.33 to 0.29 ns as a result of plasmon-coupling to the donors and the FRET-assisted exciton transfer from the donors to the acceptors, both of which shorten the donor lifetime. This consequently enhanced the acceptor emission by a factor of 1.93. On the other hand, in the complimentary case of acceptor-selective plexciton, we observed a 2.70-fold emission enhancement in the acceptor QDs, larger than the acceptor emission enhancement of the donor-selective plexciton, as a result of the combined effects of the acceptor plasmon coupling and the FRET-assisted exciton feeding. Here we present the comparative results of theoretical modeling of the donor- and acceptor-selective plexcitons of nonradiative energy transfer developed here for the first time, which are in excellent agreement with the systematic experimental characterization. Such an ability to modify and control energy transfer through mastering plexcitons is of fundamental importance, opening up new applications for quantum dot embedded plexciton devices along with the development of new techniques in FRET-based fluorescence microscopy

    Anisotropic Emission from Multilayered Plasmon Resonator Nanocomposites of Isotropic Semiconductor Quantum Dots

    Get PDF
    Cataloged from PDF version of article.We propose and demonstrate a nanocomposite localized surface plasmon resonator embedded into an artificial three-dimensional construction. Colloidal semiconductor quantum dots are assembled between layers of metal nanoparticles to create a highly strong plasmon-exciton interaction in the plasmonic cavity. In such a multilayered plasmonic resonator architecture of isotropic CdTe quantum dots, we observed polarized light emission of 80% in the vertical polarization with an enhancement factor of 4.4, resulting in a steady-state anisotropy value of 0.26 and reaching the highest quantum efficiency level of 30% ever reported for such CdTe quantum dot solids. Our electromagnetic simulation results are in good agreement with the experimental characterization data showing a significant emission enhancement in the vertical polarization, for which their fluorescence decay lifetimes are substantially shortened by consecutive replication of our unit cell architecture design. Such strongly plasmon-exciton coupling nanocomposites hold great promise for future exploitation and development of quantum dot plasmonic biophotonics and quantum dot plasmonic optoelectronics

    The not-so-massive black hole in the microquasar GRS1915+105

    Get PDF
    We present a new dynamical study of the black hole X-ray transient GRS1915+105 making use of near-infrared spectroscopy obtained with X-shooter at the VLT. We detect a large number of donor star absorption features across a wide range of wavelengths spanning the H and K bands. Our 24 epochs covering a baseline of over 1 year permit us to determine a new binary ephemeris including a refined orbital period of P=33.85 +/- 0.16 d. The donor star radial velocity curves deliver a significantly improved determination of the donor semi-amplitude which is both accurate (K_2=126 +/- 1 km/s) and robust against choice of donor star template and spectral features used. We furthermore constrain the donor star's rotational broadening to vsini=21 +/-4 km/s, delivering a binary mass ratio of q=0.042 +/- 0.024. If we combine these new constraints with distance and inclination estimates derived from modelling the radio emission, a black hole mass of M_BH=10.1 +/- 0.6 M_sun is inferred, paired with an evolved mass donor of M_2=0.47 +/- 0.27 M_sun. Our analysis suggests a more typical black hole mass for GRS1915+105 rather than the unusually high values derived in the pioneering dynamical study by Greiner et al. (2001). Our data demonstrate that high-resolution infrared spectroscopy of obscured accreting binaries can deliver dynamical mass determinations with a precision on par with optical studies

    Neutron rich matter, neutron stars, and their crusts

    Full text link
    Neutron rich matter is at the heart of many fundamental questions in Nuclear Physics and Astrophysics. What are the high density phases of QCD? Where did the chemical elements come from? What is the structure of many compact and energetic objects in the heavens, and what determines their electromagnetic, neutrino, and gravitational-wave radiations? Moreover, neutron rich matter is being studied with an extraordinary variety of new tools such as Facility for Rare Isotope Beams (FRIB) and the Laser Interferometer Gravitational Wave Observatory (LIGO). We describe the Lead Radius Experiment (PREX) that is using parity violation to measure the neutron radius in 208Pb. This has important implications for neutron stars and their crusts. Using large scale molecular dynamics, we model the formation of solids in both white dwarfs and neutron stars. We find neutron star crust to be the strongest material known, some 10 billion times stronger than steel. It can support mountains on rotating neutron stars large enough to generate detectable gravitational waves. Finally, we describe a new equation of state for supernova and neutron star merger simulations based on the Virial expansion at low densities, and large scale relativistic mean field calculations.Comment: 10 pages, 2 figures, Plenary talk International Nuclear Physics Conference 2010, Vancouver, C
    • …
    corecore