293 research outputs found
csal1 Is Controlled by a Combination of FGF and Wnt Signals in Developing Limb Buds
While some of the signaling molecules that govern establishment of the limb axis have been characterized, little is known about the downstream effector genes that interpret these signals. In Drosophila, the spalt gene is involved in cell fate determination and pattern formation in different tissues. We have cloned a chick homologue of Drosophila spalt, which we have termed csal1, and this study focuses on the regulation of csal1 expression in the limb bud. csal1 is expressed in limb buds from HH 17 to 26, in both the apical ectodermal ridge and the distal mesenchyme. Signals from the apical ridge are essential for csal1 expression, while the dorsal ectoderm is required for csal1 expression at a distance from the ridge. Our data indicate that both FGF and Wnt signals are required for the regulation of csal1 expression in the limb. Mutations in the human homologue of csal1, termed Hsal1/SALL1, result in a condition known as Townes–Brocks syndrome (TBS), which is characterized by preaxial polydactyly. The developmental expression of csal1 together with the digit phenotype in TBS patients suggests that csal1 may play a role in some aspects of distal patterning
Heterochronic Shift in Hox-Mediated Activation of Sonic hedgehog Leads to Morphological Changes during Fin Development
We explored the molecular mechanisms of morphological transformations of vertebrate paired fin/limb evolution by comparative gene expression profiling and functional analyses. In this study, we focused on the temporal differences of the onset of Sonic hedgehog (Shh) expression in paired appendages among different vertebrates. In limb buds of chick and mouse, Shh expression is activated as soon as there is a morphological bud, concomitant with Hoxd10 expression. In dogfish (Scyliorhinus canicula), however, we found that Shh was transcribed late in fin development, concomitant with Hoxd13 expression. We utilized zebrafish as a model to determine whether quantitative changes in hox expression alter the timing of shh expression in pectoral fins of zebrafish embryos. We found that the temporal shift of Shh activity altered the size of endoskeletal elements in paired fins of zebrafish and dogfish. Thus, a threshold level of hox expression determines the onset of shh expression, and the subsequent heterochronic shift of Shh activity can affect the size of the fin endoskeleton. This process may have facilitated major morphological changes in paired appendages during vertebrate limb evolution
MusMorph, a database of standardized mouse morphology data for morphometric meta-analyses
Complex morphological traits are the product of many genes with transient or lasting developmental effects that interact in anatomical context. Mouse models are a key resource for disentangling such effects, because they offer myriad tools for manipulating the genome in a controlled environment. Unfortunately, phenotypic data are often obtained using laboratory-specific protocols, resulting in self-contained datasets that are difficult to relate to one another for larger scale analyses. To enable meta-analyses of morphological variation, particularly in the craniofacial complex and brain, we created MusMorph, a database of standardized mouse morphology data spanning numerous genotypes and developmental stages, including E10.5, E11.5, E14.5, E15.5, E18.5, and adulthood. To standardize data collection, we implemented an atlas-based phenotyping pipeline that combines techniques from image registration, deep learning, and morphometrics. Alongside stage-specific atlases, we provide aligned micro-computed tomography images, dense anatomical landmarks, and segmentations (if available) for each specimen (N = 10,056). Our workflow is open-source to encourage transparency and reproducible data collection. The MusMorph data and scripts are available on FaceBase (www.facebase.org, https://doi.org/10.25550/3-HXMC) and GitHub (https://github.com/jaydevine/MusMorph)
Growth Based Morphogenesis of Vertebrate Limb Bud
Many genes and their regulatory relationships are involved in developmental phenomena. However, by chemical information alone, we cannot fully understand changing organ morphologies through tissue growth because deformation and growth of the organ are essentially mechanical processes. Here, we develop a mathematical model to describe the change of organ morphologies through cell proliferation. Our basic idea is that the proper specification of localized volume source (e.g., cell proliferation) is able to guide organ morphogenesis, and that the specification is given by chemical gradients. We call this idea “growth-based morphogenesis.” We find that this morphogenetic mechanism works if the tissue is elastic for small deformation and plastic for large deformation. To illustrate our concept, we study the development of vertebrate limb buds, in which a limb bud protrudes from a flat lateral plate and extends distally in a self-organized manner. We show how the proportion of limb bud shape depends on different parameters and also show the conditions needed for normal morphogenesis, which can explain abnormal morphology of some mutants. We believe that the ideas shown in the present paper are useful for the morphogenesis of other organs
MusMorph, a database of standardized mouse morphology data for morphometric meta-analyses.
Complex morphological traits are the product of many genes with transient or lasting developmental effects that interact in anatomical context. Mouse models are a key resource for disentangling such effects, because they offer myriad tools for manipulating the genome in a controlled environment. Unfortunately, phenotypic data are often obtained using laboratory-specific protocols, resulting in self-contained datasets that are difficult to relate to one another for larger scale analyses. To enable meta-analyses of morphological variation, particularly in the craniofacial complex and brain, we created MusMorph, a database of standardized mouse morphology data spanning numerous genotypes and developmental stages, including E10.5, E11.5, E14.5, E15.5, E18.5, and adulthood. To standardize data collection, we implemented an atlas-based phenotyping pipeline that combines techniques from image registration, deep learning, and morphometrics. Alongside stage-specific atlases, we provide aligned micro-computed tomography images, dense anatomical landmarks, and segmentations (if available) for each specimen (N = 10,056). Our workflow is open-source to encourage transparency and reproducible data collection. The MusMorph data and scripts are available on FaceBase ( www.facebase.org , https://doi.org/10.25550/3-HXMC ) and GitHub ( https://github.com/jaydevine/MusMorph )
Sequential and Coordinated Actions of c-Myc and N-Myc Control Appendicular Skeletal Development
BACKGROUND: During limb development, chondrocytes and osteoblasts emerge from condensations of limb bud mesenchyme. These cells then proliferate and differentiate in separate but adjacent compartments and function cooperatively to promote bone growth through the process of endochondral ossification. While many aspects of limb skeletal formation are understood, little is known about the mechanisms that link the development of undifferentiated limb bud mesenchyme with formation of the precartilaginous condensation and subsequent proliferative expansion of chondrocyte and osteoblast lineages. The aim of this study was to gain insight into these processes by examining the roles of c-Myc and N-Myc in morphogenesis of the limb skeleton. METHODOLOGY/PRINCIPAL FINDINGS: To investigate c-Myc function in skeletal development, we characterized mice in which floxed c-Myc alleles were deleted in undifferentiated limb bud mesenchyme with Prx1-Cre, in chondro-osteoprogenitors with Sox9-Cre and in osteoblasts with Osx1-Cre. We show that c-Myc promotes the proliferative expansion of both chondrocytes and osteoblasts and as a consequence controls the process of endochondral growth and ossification and determines bone size. The control of proliferation by c-Myc was related to its effects on global gene transcription, as phosphorylation of the C-Terminal Domain (pCTD) of RNA Polymerase II, a marker of general transcription initiation, was tightly coupled to cell proliferation of growth plate chondrocytes where c-Myc is expressed and severely downregulated in the absence of c-Myc. Finally, we show that combined deletion of N-Myc and c-Myc in early limb bud mesenchyme gives rise to a severely hypoplastic limb skeleton that exhibits features characteristic of individual c-Myc and N-Myc mutants. CONCLUSIONS/SIGNIFICANCE: Our results show that N-Myc and c-Myc act sequentially during limb development to coordinate the expansion of key progenitor populations responsible for forming the limb skeleton
Quantitative genetic variation in carbonic anhydrase isozymes from tissues of the pig-tailed macaque, Macaca nemestrina
Two isozymes of carbonic anhydrase (CA I and CA II) were quantified by a radio-immunoassay in 10 different tissues of the pig-tailed macaque. There were clearly differences in relative amounts of the two isozymes, indicating a differential regulation of these two different gene products. An inherited deficiency variant reduced red cell CA I and CA II 5000-fold and 2.7-fold, respectively. In nine other tissues, CA I was reduced from approximately twofold to 110-fold, and CA II was essentially unchanged. The CA I in deficient red cells was immunochemically and electrophoretically identical to common electrophoretic variants of CA I in the pig-tailed macaque and was enzymatically active.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44174/1/10528_2004_Article_BF00485860.pd
The Role of Spatially Controlled Cell Proliferation in Limb Bud Morphogenesis
Oriented cell behaviors likely have a more important role in limb bud elongation during development than previously suggested by the “growth-based morphogenesis” hypothesis
UHRF genes regulate programmed interdigital tissue regression and chondrogenesis in the embryonic limb
The primordium of the limb contains a number of progenitors far superior to those necessary to form the skeletal components of this appendage. During the course of development, precursors that do not follow the skeletogenic program are removed by cell senescence and apoptosis. The formation of the digits provides the most representative example of embryonic remodeling via cell degeneration. In the hand/foot regions of the embryonic vertebrate limb (autopod), the interdigital tissue and the zones of interphalangeal joint formation undergo massive degeneration that accounts for jointed and free digit morphology. Developmental senescence and caspase-dependent apoptosis are considered responsible for these remodeling processes. Our study uncovers a new upstream level of regulation of remodeling by the epigenetic regulators Uhrf1 and Uhrf2 genes. These genes are spatially and temporally expressed in the pre-apoptotic regions. UHRF1 and UHRF2 showed a nuclear localization associated with foci of methylated cytosine. Interestingly, nuclear labeling increased in cells progressing through the stages of degeneration prior to TUNEL positivity. Functional analysis in cultured limb skeletal progenitors via the overexpression of either UHRF1 or UHRF2 inhibited chondrogenesis and induced cell senescence and apoptosis accompanied with changes in global and regional DNA methylation. Uhrfs modulated canonical cell differentiation factors, such as Sox9 and Scleraxis, promoted apoptosis via up-regulation of Bak1, and induced cell senescence, by arresting progenitors at the S phase and upregulating the expression of p21. Expression of Uhrf genes in vivo was positively modulated by FGF signaling. In the micromass culture assay Uhrf1 was down-regulated as the progenitors lost stemness and differentiated into cartilage. Together, our findings emphasize the importance of tuning the balance between cell differentiation and cell stemness as a central step in the initiation of the so-called ?embryonic programmed cell death? and suggest that the structural organization of the chromatin, via epigenetic modifications, may be a precocious and critical factor in these regulatory events.Funding: We thank Montse Fernandez Calderon, Susana Dawalibi, and Sonia Perez Mantecon, for excellent technical assistance. This work was supported by a Grant (BFU2017-84046-P) from the Spanish Science and Innovation Ministry to J.A.M
Recommended from our members
Idiopathic Scoliosis Families Highlight Actin-Based and Microtubule-Based Cellular Projections and Extracellular Matrix in Disease Etiology.
Idiopathic scoliosis (IS) is a structural lateral spinal curvature of ≥10° that affects up to 3% of otherwise healthy children and can lead to life-long problems in severe cases. It is well-established that IS is a genetic disorder. Previous studies have identified genes that may contribute to the IS phenotype, but the overall genetic etiology of IS is not well understood. We used exome sequencing to study five multigenerational families with IS. Bioinformatic analyses identified unique and low frequency variants (minor allele frequency ≤5%) that were present in all sequenced members of the family. Across the five families, we identified a total of 270 variants with predicted functional consequences in 246 genes, and found that eight genes were shared by two families. We performed GO term enrichment analyses, with the hypothesis that certain functional annotations or pathways would be enriched in the 246 genes identified in our IS families. Using three complementary programs to complete these analyses, we identified enriched categories that include stereocilia and other actin-based cellular projections, cilia and other microtubule-based cellular projections, and the extracellular matrix (ECM). Our results suggest that there are multiple paths to IS and provide a foundation for future studies of IS pathogenesis
- …