773 research outputs found

    Thermodynamic and Transport Properties of CeMg2Cu9 under Pressure

    Full text link
    We report the transport and thermodynamic properties under hydrostatic pressure in the antiferromagnetic Kondo compound CeMg2Cu9 with a two-dimensional arrangement of Ce atoms. Magnetic specific heat Cmag(T) shows a Schottky-type anomaly around 30 K originating from the crystal electric field (CEF) splitting of the 4f state with the first excited level at \Delta_{1}/kB = 58 K and the second excited level at \Delta_{2}/kB = 136 K from the ground state. Electric resistivity shows a two-peaks structure due to the Kondo effect on each CEF level around T_{1}^{max} = 3 K and T_{2}^{max} = 40 K. These peaks merge around 1.9 GPa with compression. With increasing pressure, Neel temperature TN initially increases and then change to decrease. TN finally disappears at the quantum critical point Pc = 2.4 GPa.Comment: 10 pages, 6 figure

    CANGAROO-III Observation of TeV Gamma Rays from the vicinity of PSR B1 706-44

    Get PDF
    Observation by the CANGAROO-III stereoscopic system of the Imaging Cherenkov Telescope has detected extended emission of TeV gamma rays in the vicinity of the pulsar PSR B1706-44. The strength of the signal observed as gamma-ray-like events varies when we apply different ways of emulating background events. The reason for such uncertainties is argued in relevance to gamma-rays embedded in the "off-source data", that is, unknown sources and diffuse emission in the Galactic plane, namely, the existence of a complex structure of TeV gamma-ray emission around PSR B1706-44.Comment: 10 pages, 13 figures, to be published in Ap

    A model for the formation energies of alanates and boranates

    Get PDF
    We develop a simple model for the formation energies (FEs) of alkali and lkaline earth alanates and boranates, based upon ionic bonding between metal cations and (AlH4)- or (BH4)- anions. The FEs agree well with values obtained from first principles calculations and with experimental FEs. The model shows that details of the crystal structure are relatively unimportant. The small size of the (BH4)- anion causes a strong bonding in the crystal, which makes boranates more stable than alanates. Smaller alkali or alkaline earth cations do not give an increased FE. They involve a larger ionization potential that compensates for the increased crystal bonding.Comment: 3 pages, 2 figure

    Tricholoma matsutake 1-Ocen-3-ol and methyl cinnamate repel mycophagous Proisotoma minuta (Collembola: Insecta)

    Get PDF
    Two major volatiles produced by the mycelia and fruiting bodies of Tricholoma matsutake (1-octen-3-ol and methyl cinnamate) repel a mycophagous collembolan, Proisotoma minuta. Aggregation of the collembolans on their diet was significantly inhibited by exposure to 1 ppm methyl cinnamate or 10 to 100 ppm 1-octen-3-ol. The aggregation activity decreased dose-dependently upon exposure to 1-octen-3-ol at concentrations higher than 0.01 ppm. Aggregation in the presence of methyl cinnamate exhibited three phases: no significant effect at concentrations ranging from 0.001 to 0.1 ppm, significant inhibition from 1 to 100 ppm, and strong inhibition at 1,000 ppm. These results may explain why certain collembolan species do not prefer T. matsutake fruiting bodies

    CANGAROO-III Search for Gamma Rays from SN 1987A and the Surrounding Field

    Full text link
    Optical images of SN 1987A show a triple ring structure. The inner (dust) ring has recently increased in brightness and in the number of hot spots suggesting that the supernova shock wave has collided with the dense pre-existing circumstellar medium, a scenario supported by radio and X-ray observations. Such a shocked environment is widely expected to result in the acceleration of charged particles, and the accompanying emission of very high energy gamma-rays. Here, we report the results of observations made in 2004 and 2006 which yield upper limits on the TeV gamma-ray flux, which are compared with a theoretical prediction. In addition, we set upper limits on the TeV flux for four high energy objects which are located within the same field of view of the observation: the super-bubble 30 Dor C, the Crab-like pulsar PSR B0540-69, the X-ray binary LMC X-1, and the supernova remnant N157B.Comment: 5 pages, 5 figures, Accepted for publication in Ap

    Observation of an extended VHE gamma-ray emission from MSH 15-52 with CANGAROO-III

    Full text link
    We have observed the supernova remnant MSH 15-52 (G320.4-1.2), which contains the gamma-ray pulsar PSR B1509-58, using the CANGAROO-III imaging atmospheric Cherenkov telescope array from April to June in 2006. We detected gamma rays above 810 GeV at the 7 sigma level during a total effective exposure of 48.4 hours. We obtained a differential gamma-ray flux at 2.35 TeV of (7.9+/-1.5_{stat}+/-1.7_{sys}) \times 10^{-13} cm^{-2}s^{-1}TeV^{-1} with a photon index of 2.21+/-0.39_{stat}+/-0.40_{sys}, which is compatible with that of the H.E.S.S. observation in 2004. The morphology shows extended emission compared to our Point Spread Function. We consider the plausible origin of the high energy emission based on a multi-wavelength spectral analysis and energetics arguments.Comment: 9 pages, 9 figures, Accepted in Ap

    Observation of Very High Energy Gamma Rays from HESS J1804-216 with CANGAROO-III Telescopes

    Full text link
    We observed the unidentified TeV gamma-ray source HESS J1804-216 with the CANGAROO-III atmospheric Cerenkov telescopes from May to July in 2006. We detected very high energy gamma rays above 600 GeV at the 10 sigma level in an effective exposure of 76 hr. We obtained a differential flux of (5.0+/-1.5_{stat}+/-1.6_{sys})\times 10^{-12}(E/1 TeV)^{-\alpha} cm^{-2}s^{-1}TeV^{-1} with a photon index \alpha of 2.69 +/- 0.30_{stat} +/- 0.34_{sys}, which is consistent with that of the H.E.S.S. observation in 2004. We also confirm the extended morphology of the source. By combining our result with multi-wavelength observations, we discuss the possible counterparts of HESS J1804-216 and the radiation mechanism based on leptonic and hadronic processes for a supernova remnant and a pulsar wind nebula.Comment: 11 pages, 12 figures, Accepted in Ap

    Detection of the energetic pulsar PSR B1509-58 and its pulsar wind nebula in MSH 15-52 using the Fermi-Large Area Telescope

    Full text link
    We report the detection of high energy gamma-ray emission from the young and energetic pulsar PSR B1509-58 and its pulsar wind nebula (PWN) in the composite supernova remnant SNR G320.4-1.2 (aka MSH 15-52). Using 1 year of survey data with the Fermi-Large Area Telescope (LAT), we detected pulsations from PSR B1509-58 up to 1 GeV and extended gamma-ray emission above 1 GeV spatially coincident with the PWN. The pulsar light curve presents two peaks offset from the radio peak by phases 0.96 ±\pm 0.01 and 0.33 ±\pm 0.02. New constraining upper limits on the pulsar emission are derived below 1 GeV and confirm a severe spectral break at a few tens of MeV. The nebular spectrum in the 1 - 100 GeV energy range is well described by a power-law with a spectral index of (1.57 ±\pm 0.17 ±\pm 0.13) and a flux above 1 GeV of (2.91 ±\pm 0.79 ±\pm 1.35) 10^{-9} cm^{-2} s^{-1}. The first errors represent the statistical errors on the fit parameters, while the second ones are the systematic uncertainties. The LAT spectrum of the nebula connects nicely with Cherenkov observations, and indicates a spectral break between GeV and TeV energies.Comment: 14 pages, 6 figures, accepted for publication by Ap

    Periodic Emission from the Gamma-ray Binary 1FGL J1018.6-5856

    Get PDF
    Gamma-ray binaries are stellar systems containing a neutron star or black hole with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy. A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that 1FGL J1018.6-5856 exhibits intensity and spectral modulation with a 16.6 day period. We identified a variable X-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an O6V((f)) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. 1FGL J1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.Comment: Contact authors: R.H.D. Corbet, M. Kerr, C.C. Cheun

    Fermi observations of high-energy gamma-ray emission from GRB 090217A

    Full text link
    The Fermi observatory is advancing our knowledge of Gamma-Ray Bursts (GRBs) through pioneering observations at high energies, covering more than 7 decades in energy with the two on-board detectors, the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM). Here we report on the observation of the long GRB 090217A which triggered the GBM and has been detected by the LAT with a significance greater than 9 sigma. We present the GBM and LAT observations and on-ground analyses, including the time-resolved spectra and the study of the temporal profile from 8 keV up to 1 GeV. All spectra are well reproduced by a Band model. We compare these observations to the first two LAT-detected, long bursts GRB 080825C and GRB 080916C. These bursts were found to have time-dependent spectra and exhibited a delayed onset of the high-energy emission, which are not observed in the case of GRB 090217A. We discuss some theoretical implications for the high-energy emission of GRBs.Comment: 17 pages, 4 figures. Contact Authors: Fred, Piron; Sara, Cutini; Andreas, von Kienli
    corecore