5,536 research outputs found

    Experimental combustor study program

    Get PDF
    Advanced combustor concepts are evaluated as a means of accommodating possible future broad specification fuels. The three advanced double annular combustor concepts consisted of (1) a concept employing high pressure drop fuel nozzles for improved atomization, (2) a concept with premixing tubes in the main stage, and (3) a concept with the pilot stage on the inside and the main stage on the sideout, which is the reverse of the other two concepts. All of the advanced concepts show promise for reduced sensitivity to fuel hydrogen content. Some hardware problems were encountered, but these problems could be quickly resolved if refinement tests were conducted. The design with the premixing main stage was selected for a parametric test because of its low NOx emissions level, carbon free dome, and very low dome temperatures which were essentially independent of fuel type. The other advanced designs also had low done temperatures. The premixing dome design liner temperatures exhibited less sensitivity to fuel type than did the base-line combustor, although more sensitivity than observed for concept 1. The inner liner hot spot and the observed smoke results for the premixing design suggest that the fuel-air mixture was not as uniform as desired

    Are periodic solar wind number density structures formed in the solar corona?

    Get PDF
    [1] We present an analysis of the alpha to proton solar wind abundance ratio (AHe) during a period characterized by significant large size scale density fluctuations, focusing on an event in which the proton and alpha enhancements are anti-correlated. In a recent study using 11 years (1995–2005) of solar wind observations from the Wind spacecraft, N. M. Viall et al. [2008] showed that periodic proton density structures occurred at particular radial length-scales more often than others. The source of these periodic density structures is a significant and outstanding question. Are they generated in the interplanetary medium, or are they a relic of coronal activity as the solar wind was formed? We use AHe to answer this question, as solar wind elemental abundance ratios are not expected to change during transit. For this event, the anti-phase nature of the AHe variations strongly suggests that periodic solar wind density structures originate in the solar corona

    Experimental evaluation of combustor concepts for burning broad property fuels

    Get PDF
    A baseline CF6-50 combustor and three advanced combustor designs were evaluated to determine the effects of combustor design on operational characteristics using broad property fuels. Three fuels were used in each test: Jet A, a broad property 13% hydrogen fuel, and a 12% hydrogen fuel blend. Testing was performed in a sector rig at true cruise and simulated takeoff conditions for the CF6-50 engine cycle. The advanced combustors (all double annular, lean dome designs) generally exhibited lower metal temperatures, exhaust emissions, and carbon buildup than the baseline CF6-50 combustor. The sensitivities of emissions and metal temperatures to fuel hydrogen content were also generally lower for the advanced designs. The most promising advanced design used premixing tubes in the main stage. This design was chosen for additional testing in which fuel/air ratio, reference velocity, and fuel flow split were varied

    Shock waves in a one-dimensional Bose gas: from a Bose-Einstein condensate to a Tonks gas

    Full text link
    We derive and analyze shock-wave solutions of hydrodynamic equations describing repulsively interacting one dimensional Bose gas. We also use the number-conserving Bogolubov approach to verify accuracy of the Gross-Pitaevskii equation in shock wave problems. We show that quantum corrections to dynamics of shocks (dark-shock-originated solitons) in a Bose-Einstein condensate are negligible (important) for a realistic set of system parameters. We point out possible signatures of a Bose-Einstein condensate -- Tonks crossover in shock dynamics. Our findings can be directly verified in different experimental setups.Comment: 10 pages, small corrections with respect to the last submission, version accepted in Phys. Rev.

    ALFA & 3D: integral field spectroscopy with adaptive optics

    Full text link
    One of the most important techniques for astrophysics with adaptive optics is the ability to do spectroscopy at diffraction limited scales. The extreme difficulty of positioning a faint target accurately on a very narrow slit can be avoided by using an integral field unit, which provides the added benefit of full spatial coverage. During 1998, working with ALFA and the 3D integral field spectrometer, we demonstrated the validity of this technique by extracting and distinguishing spectra from binary stars separated by only 0.26". The combination of ALFA & 3D is also ideally suited to imaging distant galaxies or the nuclei of nearby ones, as its field of view can be changed between 1.2"x1.2" and 4"x4", depending on the pixel scale chosen. In this contribution we present new results both on galactic targets, namely young stellar objects, as well as extra-galactic objects including a Seyfert and a starburst nucleus.Comment: SPIE meeting 4007 on Adaptive Optical Systems Technology, March 200

    Communicating trustworthiness and building trust in interorganizational virtual organizations

    Get PDF
    We propose a theory of trust in interorganizational virtual organizations that focuses on how trustworthiness can be communicated and trust built in this environment. The theory highlights three issues that must be dealt with if the potential obstacles to the development of trust in the virtual context are to be overcome. These are communication of trustworthiness facilitated by reliable Information and Communication Technology (ICT), establishment of a common business understanding, and strong business ethics. We propose four specific propositions relating to these issues, and suggest topics to be explored in future research. (C) 2001 Elsevier Science Inc. All rights reserved

    Consistent cooperation in a cichlid fish is caused by maternal and developmental effects rather than heritable genetic variation.

    Get PDF
    This is the author accepted manuscript. The final version is available from Royal Society via the DOI in this record.Studies on the evolution of cooperative behaviour are typically confined to understanding its adaptive value. It is equally essential, however, to understand its potential to evolve, requiring knowledge about the phenotypic consistency and genetic basis of cooperative behaviour. While previous observational studies reported considerably high heritabilities of helping behaviour in cooperatively breeding vertebrates, experimental studies disentangling the relevant genetic and non-genetic components of cooperative behaviour are lacking. In a half-sibling breeding experiment, we investigated the repeatability and heritability of three major helping behaviours performed by subordinates of the cooperatively breeding fishNeolamprologus pulcherTo experimentally manipulate the amount of help needed in a territory, we raised the fish in two environments differing in egg predation risk. All three helping behaviours were significantly repeatable, but had very low heritabilities. The high within-individual consistencies were predominantly due to maternal and permanent environment effects. The perceived egg predation risk had no effect on helping, but social interactions significantly influenced helping propensities. Our results reveal that developmentally plastic adjustments of provided help to social context shape cooperative phenotypes, whereas heritable genetic variation plays a minor role.Funding was provided by the ‘ProDoc’ program of the Swiss National Science Foundation (SNF, projects PDFMP3_137196 and 31003A_156881 to B.T.), and the ‘120% support grant’ to C.K. of the University of Bern

    Phase diagram of silicon from atomistic simulations

    Get PDF
    In this letter we present a calculation of the temperature-pressure phase diagram of Si in a range of pressures covering from -5 to 20 GPa and temperatures up to the melting point. The phase boundaries and triple points between the diamond, liquid, β\beta-Sn and Si34{Si}_{34} clathrate phases are reported. We have employed efficient simulation techniques to calculate free energies and to numerically integrate the Clausius-Clapeyron equation, combined with a tight binding model capable of an accuracy comparable to that of first-principles methods. The resulting phase diagram agrees well with the available experimental data.Comment: 5 pages, 1 figure, accepted in PR

    Stringent Phenomenological Investigation into Heterotic String Optical Unification

    Get PDF
    For the weakly coupled heterotic string (WCHS) there is a well-known factor of twenty conflict between the minimum string coupling unification scale, Lambda_H ~5x10^(17) GeV, and the projected MSSM unification scale, Lambda_U ~ 2.5x10^(16) GeV, assuming an intermediate scale desert (ISD). Renormalization effects of intermediate scale MSSM-charged exotics (ISME) (endemic to quasi-realistic string models) can resolve this issue, pushing the MSSM scale up to the string scale. However, for a generic string model, this implies that the projected Lambda_U unification under ISD is accidental. If the true unification scale is 5.0x10^(17) GeV, is it possible that illusionary unification at 2.5x10^(17) GeV in the ISD scenario is not accidental? If it is not, then under what conditions would the assumption of ISME in a WCHS model imply apparent unification at Lambda_U when ISD is falsely assumed? Geidt's "optical unification" suggests that Lambda_U is not accidental, by offering a mechanism whereby a generic MSSM scale Lambda_U < Lambda_H is guaranteed. A WCHS model was constructed that offers the possibility of optical unification, depending on the availability of anomaly-cancelling flat directions meeting certain requirements. This paper reports on the systematic investigation of the optical unification properties of the set of stringent flat directions of this model. Stringent flat directions can be guaranteed to be F-flat to all finite order (or to at least a given finite order consistent with electroweak scale supersymmetry breaking) and can be viewed as the likely roots of more general flat directions. Analysis of the phenomenology of stringent flat directions gives an indication of the remaining optical unification phenomenology that must be garnered by flat directions developed from them.Comment: standard latex, 18 pages of tex

    High accuracy short-term PWV operational forecast at the VLT and perspectives for sky background forecast

    Get PDF
    In this paper we present the first results ever obtained by applying the autoregressive (AR) technique to the precipitable water vapour (PWV). The study is performed at the Very Large Telescope. The AR technique has been recently proposed to provide forecasts of atmospheric and astroclimatic parameters at short time scales (up to a few hours) by achieving much better performances with respect to the 'standard forecasts' provided early afternoon for the coming night. The AR method uses the real-time measurements of the parameter of interest to improve the forecasts performed with atmospherical models. We used here measurements provided by LHATPRO, a radiometer measuring continuously the PWV at the VLT. When comparing the AR forecast at 1h to the standard forecast, we observe a gain factor of ∼\sim 8 (i.e. ∼\sim 800 per cent) in terms of forecast accuracy. In the PWV ≤\leq 1 mm range, which is extremely critical for infrared astronomical applications, the RMSE of the predictions is of the order of just a few hundredth of millimetres (0.04 mm). We proved therefore that the AR technique provides an important benefit to VLT science operations for all the instruments sensitive to the PWV. Besides, we show how such an ability in predicting the PWV can be useful also to predict the sky background in the infrared range (extremely appealing for METIS). We quantify such an ability by applying this method to the NEAR project (New Earth in the Alpha Cen region) supported by ESO and Breakthrough Initiatives
    • …
    corecore