133 research outputs found

    A Continuum Model for Metabolic Gas Exchange in Pear Fruit

    Get PDF
    Exchange of O2 and CO2 of plants with their environment is essential for metabolic processes such as photosynthesis and respiration. In some fruits such as pears, which are typically stored under a controlled atmosphere with reduced O2 and increased CO2 levels to extend their commercial storage life, anoxia may occur, eventually leading to physiological disorders. In this manuscript we have developed a mathematical model to predict the internal gas concentrations, including permeation, diffusion, and respiration and fermentation kinetics. Pear fruit has been selected as a case study. The model has been used to perform in silico experiments to evaluate the effect of, for example, fruit size or ambient gas concentration on internal O2 and CO2 levels. The model incorporates the actual shape of the fruit and was solved using fluid dynamics software. Environmental conditions such as temperature and gas composition have a large effect on the internal distribution of oxygen and carbon dioxide in fruit. Also, the fruit size has a considerable effect on local metabolic gas concentrations; hence, depending on the size, local anaerobic conditions may result, which eventually may lead to physiological disorders. The model developed in this manuscript is to our knowledge the most comprehensive model to date to simulate gas exchange in plant tissue. It can be used to evaluate the effect of environmental stresses on fruit via in silico experiments and may lead to commercial applications involving long-term storage of fruit under controlled atmospheres

    Optimum ground states for spin-32\frac{3}{2} chains

    Full text link
    We present a set of {\em optimum ground states} for a large class of spin-32\frac{3}{2} chains. Such global ground states are simultaneously ground states of the local Hamiltonian, i.e. the nearest neighbour interaction in the present case. They are constructed in the form of a matrix product. We find three types of phases, namely a {\em weak antiferromagnet}, a {\em weak ferromagnet}, and a {\em dimerized antiferromagnet}. The main physical properties of these phases are calculated exactly by using a transfer matrix technique, in particular magnetization and two spin correlations. Depending on the model parameters, they show a surprisingly rich structure.Comment: LaTeX, 22 pages, 6 embedded Postscript figure

    Real-Time Monitoring of Aptamer Functionalization and Detection of Ara H1 by Electrochemical Impedance Spectroscopy and Dissipation-Mode Quartz Crystal Microbalance

    Get PDF
    Peanut allergy, the most common cause of fatal-food-related anaphylaxis, is a lifelong disorder and the only existing therapy is avoidance of allergen-containing food. Detection of Ara h 1, the most important peanut allergen, is commonly performed by immunoassay techniques relying on the use of expensive and relatively unstable antibodies. Aptamers can overcome these drawbacks and offer a great potential for the development of reliable biosensors. Therefore, we will present a novel aptamer-based sensor for the label-free detection of Ara h 1. Amino (NH2)-terminated Ara h 1 aptamers were covalently attached to carboxylated gold surfaces employing carbodiimide chemistry. This functionalization procedure was followed in real time by electrochemical impedance spectroscopy and quartz crystal microbalance with dissipation monitoring. Subsequently, the functionalized surfaces were exposed to Ara h 1 solutions in TGK buffer. By combining the two techniques, we can measure in a wide concentration regime varying from the low nanomolar range (1-15 nM) via electrochemical impedance spectroscopy to the higher concentrations (25-250 nM) by microgravimetric detection. In summary, a fast, low-cost and sensitive sensor platform for Ara h 1 detection has been developed, which can be operated as a ‘stand-alone device’, making it well suited for applications such as the screening of trace allergens

    Drug use and nightlife: more than just dance music

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Research over the last decade has focused almost exclusively on the association between electronic music and MDMA (3,4-Methylenedioxymethamphetamine or "ecstasy") or other stimulant drug use in clubs. Less attention has been given to other nightlife venues and music preferences, such as rock music or southern/funky music. This study aims to examine a broader spectrum of nightlife, beyond dance music. It looks at whether certain factors influence the frequency of illegal drug and alcohol use: the frequency of going to certain nightlife venues in the previous month (such as, pubs, clubs or goa parties); listening to rock music, dance music or southern and funky music; or sampling venues (such as, clubs, dance events or rock festivals). The question of how these nightlife variables influence the use of popular drugs like alcohol, MDMA, cannabis, cocaine and amphetamines is addressed.</p> <p>Methods</p> <p>The study sample consisted of 775 visitors of dance events, clubs and rock festivals in Belgium. Study participants answered a survey on patterns of going out, music preferences and drug use. Odds ratios were used to determine whether the odds of being an illegal substance user are higher for certain nightlife-related variables. Furthermore, five separate ordinal regression analyses were used to investigate drug use in relation to music preference, venues visited during the last month and sampling venue.</p> <p>Results</p> <p>Respondents who used illegal drugs were 2.5 times more likely to report that they prefer dance music. Goa party visitors were nearly 5 times more likely to use illegal drugs. For those who reported visiting clubs, the odds of using illegal drugs were nearly 2 times higher. Having gone to a pub in the last month was associated with both more frequent alcohol use and more frequent illegal substance use. People who reported liking rock music and attendees of rock festivals used drugs less frequently.</p> <p>Conclusions</p> <p>It was concluded that a more extended recreational environment, beyond dance clubs, is associated with frequent drug use. This stresses the importance of targeted prevention in various recreational venues tailored to the specific needs of the setting and its visitors.</p

    Recent advances in understanding hypertension development in sub-Saharan Africa

    Get PDF
    Consistent reports indicate that hypertension is a particularly common finding in black populations. Hypertension occurs at younger ages and is often more severe in terms of blood pressure levels and organ damage than in whites, resulting in a higher incidence of cardiovascular disease and mortality. This review provides an outline of recent advances in the pathophysiological understanding of blood pressure elevation and the consequences thereof in black populations in Africa. This is set against the backdrop of populations undergoing demanding and rapid demographic transition, where infection with the Human Immunodeficiency Virus predominates, and where under and over-nutrition coexist. Collectively, recent findings from Africa illustrate an increased lifetime risk to hypertension from foetal life onwards. From young ages black populations display early endothelial dysfunction, increased vascular tone and reactivity, microvascular structural adaptions, as well as increased aortic stiffness resulting in elevated central and brachial blood pressures during the day and night, when compared to whites. Together with knowledge on the contributions of sympathetic activation and abnormal renal sodium handling, these pathophysiological adaptations result in subclinical and clinical organ damage at younger ages. This overall enhanced understanding on the determinants of blood pressure elevation in blacks encourages (a) novel approaches to assess and manage hypertension in Africa better, (b) further scientific discovery to develop more effective prevention and treatment strategies, and (c) policymakers and health advocates to collectively contribute in creating health-promoting environments in Africa

    Current quality of life and its determinants among opiate-dependent individuals five years after starting methadone treatment

    Get PDF
    This study explores the current QoL of opiate-dependent individuals who started outpatient methadone treatment at least 5 years ago and assesses the influence of demographic, psychosocial, drug and health-related variables on individuals' QoL. Participants (n = 159) were interviewed about their current QoL, psychological distress and severity of drug-related problems, using the Lancashire Quality of Life Profile, the Brief Symptom Inventory and the Addiction Severity Index. Potential determinants of QoL were assessed in a multiple linear regression analysis. Five years after the start of methadone treatment, opiate-dependent individuals report low QoL scores on various domains. No association was found between drug-related variables and QoL, but a significant negative impact of psychological distress was identified. Severity of psychological distress, taking medication for psychological problems and the inability to change one's living situation were associated with lower QoL. Having at least one good friend and a structured daily activity had a significant, positive impact on QoL. Opiate-dependent individuals' QoL is mainly determined by their psychological well-being and a number of psychosocial variables. These findings highlight the importance of a holistic approach to treatment and support in methadone maintenance treatment, which goes beyond fixing the negative physical consequences of opiate dependence

    Extensive recombination events and horizontal gene transfer shaped the Legionella pneumophila genomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Legionella pneumophila </it>is an intracellular pathogen of environmental protozoa. When humans inhale contaminated aerosols this bacterium may cause a severe pneumonia called Legionnaires' disease. Despite the abundance of dozens of <it>Legionella </it>species in aquatic reservoirs, the vast majority of human disease is caused by a single serogroup (Sg) of a single species, namely <it>L. pneumophila </it>Sg1. To get further insights into genome dynamics and evolution of Sg1 strains, we sequenced strains Lorraine and HL 0604 1035 (Sg1) and compared them to the available sequences of Sg1 strains Paris, Lens, Corby and Philadelphia, resulting in a comprehensive multigenome analysis.</p> <p>Results</p> <p>We show that <it>L. pneumophila </it>Sg1 has a highly conserved and syntenic core genome that comprises the many eukaryotic like proteins and a conserved repertoire of over 200 Dot/Icm type IV secreted substrates. However, recombination events and horizontal gene transfer are frequent. In particular the analyses of the distribution of nucleotide polymorphisms suggests that large chromosomal fragments of over 200 kbs are exchanged between <it>L. pneumophila </it>strains and contribute to the genome dynamics in the natural population. The many secretion systems present might be implicated in exchange of these fragments by conjugal transfer. Plasmids also play a role in genome diversification and are exchanged among strains and circulate between different <it>Legionella </it>species.</p> <p>Conclusion</p> <p>Horizontal gene transfer among bacteria and from eukaryotes to <it>L. pneumophila </it>as well as recombination between strains allows different clones to evolve into predominant disease clones and others to replace them subsequently within relatively short periods of time.</p

    Root Canal Anatomy of Maxillary and Mandibular Teeth

    Get PDF
    It is a common knowledge that a comprehensive understanding of the complexity of the internal anatomy of teeth is imperative to ensure successful root canal treatment. The significance of canal anatomy has been emphasized by studies demonstrating that variations in canal geometry before cleaning, shaping, and obturation procedures had a greater effect on the outcome than the techniques themselves. In recent years, significant technological advances for imaging teeth, such as CBCT and micro-CT, respectively, have been introduced. Their noninvasive nature allows to perform in vivo anatomical studies using large populations to address the influence of several variables such as ethnicity, aging, gender, and others, on the root canal anatomy, as well as to evaluate, quantitatively and/or qualitatively, specific and fine anatomical features of a tooth group. The purpose of this chapter is to summarize the morphological aspects of the root canal anatomy published in the literature of all groups of teeth and illustrate with three-dimensional images acquired from micro-CT technology.info:eu-repo/semantics/publishedVersio
    corecore