211 research outputs found

    Dry and wet interfaces: Influence of solvent particles on molecular recognition

    Full text link
    We present a coarse-grained lattice model to study the influence of water on the recognition process of two rigid proteins. The basic model is formulated in terms of the hydrophobic effect. We then investigate several modifications of our basic model showing that the selectivity of the recognition process can be enhanced by considering the explicit influence of single solvent particles. When the number of cavities at the interface of a protein-protein complex is fixed as an intrinsic geometric constraint, there typically exists a characteristic fraction that should be filled with water molecules such that the selectivity exhibits a maximum. In addition the optimum fraction depends on the hydrophobicity of the interface so that one has to distinguish between dry and wet interfaces.Comment: 11 pages, 7 figure

    Ferredoxin containing bacteriocins suggest a novel mechanism of iron uptake in <i>Pectobacterium spp</i>

    Get PDF
    In order to kill competing strains of the same or closely related bacterial species, many bacteria produce potent narrow-spectrum protein antibiotics known as bacteriocins. Two sequenced strains of the phytopathogenic bacterium &lt;i&gt;Pectobacterium carotovorum&lt;/i&gt; carry genes encoding putative bacteriocins which have seemingly evolved through a recombination event to encode proteins containing an N-terminal domain with extensive similarity to a [2Fe-2S] plant ferredoxin and a C-terminal colicin M-like catalytic domain. In this work, we show that these genes encode active bacteriocins, pectocin M1 and M2, which target strains of &lt;i&gt;Pectobacterium carotovorum&lt;/i&gt; and &lt;i&gt;Pectobacterium atrosepticum&lt;/i&gt; with increased potency under iron limiting conditions. The activity of pectocin M1 and M2 can be inhibited by the addition of spinach ferredoxin, indicating that the ferredoxin domain of these proteins acts as a receptor binding domain. This effect is not observed with the mammalian ferredoxin protein adrenodoxin, indicating that &lt;i&gt;Pectobacterium spp.&lt;/i&gt; carries a specific receptor for plant ferredoxins and that these plant pathogens may acquire iron from the host through the uptake of ferredoxin. In further support of this hypothesis we show that the growth of strains of &lt;i&gt;Pectobacterium carotovorum&lt;/i&gt; and &lt;i&gt;atrosepticum&lt;/i&gt; that are not sensitive to the cytotoxic effects of pectocin M1 is enhanced in the presence of pectocin M1 and M2 under iron limiting conditions. A similar growth enhancement under iron limiting conditions is observed with spinach ferrodoxin, but not with adrenodoxin. Our data indicate that pectocin M1 and M2 have evolved to parasitise an existing iron uptake pathway by using a ferredoxin-containing receptor binding domain as a Trojan horse to gain entry into susceptible cells

    HotRegion: a database of predicted hot spot clusters

    Get PDF
    Hot spots are energetically important residues at protein interfaces and they are not randomly distributed across the interface but rather clustered. These clustered hot spots form hot regions. Hot regions are important for the stability of protein complexes, as well as providing specificity to binding sites. We propose a database called HotRegion, which provides the hot region information of the interfaces by using predicted hot spot residues, and structural properties of these interface residues such as pair potentials of interface residues, accessible surface area (ASA) and relative ASA values of interface residues of both monomer and complex forms of proteins. Also, the 3D visualization of the interface and interactions among hot spot residues are provided. HotRegion is accessible at http://prism.ccbb.ku.edu.tr/hotregion

    Feature Extraction and Random Forest to Identify Sheep Behavior from Accelerometer Data

    Get PDF
    Sensor technologies play an essential part in the agricultural community and many other scientific and commercial communities. Accelerometer signals and Machine Learning techniques can be used to identify and observe behaviours of animals without the need for an exhaustive human observation which is labour intensive and time consuming. This study employed random forest algorithm to identify grazing, walking, scratching, and inactivity (standing, resting) of 8 Hebridean ewes located in Cheshire, Shotwick in the UK. We gathered accelerometer data from a sensor device which was fitted on the collar of the animals. The selection of the algorithm was based on previous research by which random forest achieved the best results among other benchmark techniques. Therefore, in this study, more focus was given to feature engineering to improve prediction performance. Seventeen features from time and frequency domain were calculated from the accelerometer measurements and the magnitude of the acceleration. Feature elimination was utilised in which highly correlated ones were removed, and only nine out of seventeen features were selected. The algorithm achieved an overall accuracy of 99.43% and a kappa value of 98.66%. The accuracy for grazing, walking, scratching, and inactive was 99.08%, 99.13%, 99.90%, and 99.85%, respectively. The overall results showed that there is a significant improvement over previous methods and studies for all mutually exclusive behaviours. Those results are promising, and the technique could be further tested for future real-time activity recognition

    Lectin-like bacteriocins from pseudomonas spp. utilise D-rhamnose containing lipopolysaccharide as a cellular receptor

    Get PDF
    Lectin-like bacteriocins consist of tandem monocot mannose-binding domains and display a genus-specific killing activity. Here we show that pyocin L1, a novel member of this family from Pseudomonas aeruginosa, targets susceptible strains of this species through recognition of the common polysaccharide antigen (CPA) of P. aeruginosa lipopolysaccharide that is predominantly a homopolymer of d-rhamnose. Structural and biophysical analyses show that recognition of CPA occurs through the C-terminal carbohydrate-binding domain of pyocin L1 and that this interaction is a prerequisite for bactericidal activity. Further to this, we show that the previously described lectin-like bacteriocin putidacin L1 shows a similar carbohydrate-binding specificity, indicating that oligosaccharides containing d-rhamnose and not d-mannose, as was previously thought, are the physiologically relevant ligands for this group of bacteriocins. The widespread inclusion of d-rhamnose in the lipopolysaccharide of members of the genus Pseudomonas explains the unusual genus-specific activity of the lectin-like bacteriocins

    Mutational and biochemical analysis of the DNA-entry nuclease EndA from Streptococcus pneumoniae

    Get PDF
    EndA is a membrane-attached surface-exposed DNA-entry nuclease previously known to be required for genetic transformation of Streptococcus pneumoniae. More recent studies have shown that the enzyme also plays an important role during the establishment of invasive infections by degrading extracellular chromatin in the form of neutrophil extracellular traps (NETs), enabling streptococci to overcome the innate immune system in mammals. As a virulence factor, EndA has become an interesting target for future drug design. Here we present the first mutational and biochemical analysis of recombinant forms of EndA produced either in a cell-free expression system or in Escherichia coli. We identify His160 and Asn191 to be essential for catalysis and Asn182 to be required for stability of EndA. The role of His160 as the putative general base in the catalytic mechanism is supported by chemical rescue of the H160A variant of EndA with imidazole added in excess. Our study paves the way for the identification and development of protein or low-molecular-weight inhibitors for EndA in future high-throughput screening assays

    A growing toolbox of techniques for studying β-barrel outer membrane protein folding and biogenesis

    Get PDF
    Great strides into understanding protein folding have been made since he seminal work of Anfinsen over 40 years ago, but progress in the study of membrane protein folding has lagged behind that of their water soluble counterparts. Researchers in these fields continue to turn to more advanced techniques such as NMR, mass spectrometry, molecular dynamics (MD) and single molecule methods to interrogate how proteins fold. Our understanding of β-barrel outer membrane protein (OMP) folding has benefited from these advances in the last decade. This class of proteins must traverse the periplasm and then insert into an asymmetric lipid membrane in the absence of a chemical energy source. In this review we discuss old, new and emerging techniques used to examine the process of OMP folding and biogenesis in vitro and describe some of the insights and new questions these techniques have revealed

    Surface Properties of Helicobacter pylori Urease Complex Are Essential for Persistence

    Get PDF
    The enzymatic activity of Helicobacter pylori's urease neutralises stomach acidity, thereby promoting infection by this pathogen. Urease protein has also been found to interact with host cells in vitro, although this property's possible functional importance has not been studied in vivo. To test for a role of the urease surface in the host/pathogen interaction, surface exposed loops that display high thermal mobility were targeted for inframe insertion mutagenesis. H. pylori expressing urease with insertions at four of eight sites tested retained urease activity, which in three cases was at least as stable as was wild-type urease at pH 3. Bacteria expressing one of these four mutant ureases, however, failed to colonise mice for even two weeks, and a second had reduced bacterial titres after longer term (3 to 6 months) colonisation. These results indicate that a discrete surface of the urease complex is important for H. pylori persistence during gastric colonisation. We propose that this surface interacts directly with host components important for the host-pathogen interaction, immune modulation or other actions that underlie H. pylori persistence in its special gastric mucosal niche

    E9-Im9 Colicin DNase−Immunity Protein Biomolecular Association in Water: A Multiple-Copy and Accelerated Molecular Dynamics Simulation Study

    Get PDF
    Protein−protein transient and dynamic interactions underlie all biological processes. The molecular dynamics (MD) of the E9 colicin DNase protein, its Im9 inhibitor protein, and their E9-Im9 recognition complex are investigated by combining multiple-copy (MC) MD and accelerated MD (aMD) explicit-solvent simulation approaches, after validation with crystalline-phase and solution experiments. Im9 shows higher flexibility than its E9 counterpart. Im9 displays a significant reduction of backbone flexibility and a remarkable increase in motional correlation upon E9 association. Im9 loops 23−31 and 54−64 open with respect to the E9-Im9 X-ray structure and show high conformational diversity. Upon association a large fraction (∼20 nm2) of E9 and Im9 protein surfaces become inaccessible to water. Numerous salt bridges transiently occurring throughout our six 50 ns long MC-MD simulations are not present in the X-ray model. Among these Im9 Glu31−E9 Arg96 and Im9 Glu41−Lys89 involve interface interactions. Through the use of 10 ns of Im9 aMD simulation, we reconcile the largest thermodynamic impact measured for Asp51Ala mutation with Im9 structure and dynamics. Lys57 acts as an essential molecular switch to shift Im9 surface loop towards an ideal configuration for E9 inhibition. This is achieved by switching Asp60−Lys57 and Asp62−Lys57 hydrogen bonds to Asp51−Lys57 salt bridge. E9-Im9 recognition involves shifts of conformational distributions, reorganization of intramolecular hydrogen bond patterns, and formation of new inter- and intramolecular interactions. The description of key transient biological interactions can be significantly enriched by the dynamic and atomic-level information provided by computer simulations

    Structural Basis for Type VI Secretion Effector Recognition by a Cognate Immunity Protein

    Get PDF
    The type VI secretion system (T6SS) has emerged as an important mediator of interbacterial interactions. A T6SS from Pseudomonas aeruginosa targets at least three effector proteins, type VI secretion exported 1–3 (Tse1–3), to recipient Gram-negative cells. The Tse2 protein is a cytoplasmic effector that acts as a potent inhibitor of target cell proliferation, thus providing a pronounced fitness advantage for P. aeruginosa donor cells. P. aeruginosa utilizes a dedicated immunity protein, type VI secretion immunity 2 (Tsi2), to protect against endogenous and intercellularly-transferred Tse2. Here we show that Tse2 delivered by the T6SS efficiently induces quiescence, not death, within recipient cells. We demonstrate that despite direct interaction of Tsi2 and Tse2 in the cytoplasm, Tsi2 is dispensable for targeting the toxin to the secretory apparatus. To gain insights into the molecular basis of Tse2 immunity, we solved the 1.00 Å X-ray crystal structure of Tsi2. The structure shows that Tsi2 assembles as a dimer that does not resemble previously characterized immunity or antitoxin proteins. A genetic screen for Tsi2 mutants deficient in Tse2 interaction revealed an acidic patch distal to the Tsi2 homodimer interface that mediates toxin interaction and immunity. Consistent with this finding, we observed that destabilization of the Tsi2 dimer does not impact Tse2 interaction. The molecular insights into Tsi2 structure and function garnered from this study shed light on the mechanisms of T6 effector secretion, and indicate that the Tse2–Tsi2 effector–immunity pair has features distinguishing it from previously characterized toxin–immunity and toxin–antitoxin systems
    corecore