278 research outputs found

    RsiteDB: a database of protein binding pockets that interact with RNA nucleotide bases

    Get PDF
    We present a new database and an on-line search engine, which store and query the protein binding pockets that interact with single-stranded RNA nucleotide bases. The database consists of a classification of binding sites derived from protein–RNA complexes. Each binding site is assigned to a cluster of similar binding sites in other protein–RNA complexes. Cluster members share similar spatial arrangements of physico–chemical properties, thus can reveal novel similarity between proteins and RNAs with different sequences and folds. The clusters provide 3D consensus binding patterns important for protein–nucleotide recognition. The database search engine allows two types of useful queries: first, given a PDB code of a protein–RNA complex, RsiteDB can detail and classify the properties of the protein binding pockets accommodating extruded RNA nucleotides not involved in local RNA base pairing. Second, given an unbound protein structure, RsiteDB can perform an on-line structural search against the constructed database of 3D consensus binding patterns. Regions similar to known patterns are predicted to serve as binding sites. Alignment of the query to these patterns with their corresponding RNA nucleotides allows making unique predictions of the protein–RNA interactions at the atomic level of detail. This database is accessable at http://bioinfo3d.cs.tau.ac.il/RsiteDB

    SiteEngines: recognition and comparison of binding sites and protein–protein interfaces

    Get PDF
    Protein surface regions with similar physicochemical properties and shapes may perform similar functions and bind similar binding partners. Here we present two web servers and software packages for recognition of the similarity of binding sites and interfaces. Both methods recognize local geometrical and physicochemical similarity, which can be present even in the absence of overall sequence or fold similarity. The first method, SiteEngine (), receives as an input two protein structures and searches the complete surface of one protein for regions similar to the binding site of the other. The second, Interface-to-Interface (I2I)-SiteEngine (), compares protein–protein interfaces, which are regions of interaction between two protein molecules. It receives as an input two structures of protein–protein complexes, extracts the interfaces and finds the three-dimensional transformation that maximizes the similarity between two pairs of interacting binding sites. The output of both servers consists of a superimposition in PDB file format and a list of physicochemical properties shared by the compared entities. The methods are highly efficient and the freely available software packages are suitable for large-scale database searches of the entire PDB

    MultiBind and MAPPIS: webservers for multiple alignment of protein 3D-binding sites and their interactions

    Get PDF
    Analysis of protein–ligand complexes and recognition of spatially conserved physico-chemical properties is important for the prediction of binding and function. Here, we present two webservers for multiple alignment and recognition of binding patterns shared by a set of protein structures. The first webserver, MultiBind (http://bioinfo3d.cs.tau.ac.il/MultiBind), performs multiple alignment of protein binding sites. It recognizes the common spatial chemical binding patterns even in the absence of similarity of the sequences or the folds of the compared proteins. The input to the MultiBind server is a set of protein-binding sites defined by interactions with small molecules. The output is a detailed list of the shared physico-chemical binding site properties. The second webserver, MAPPIS (http://bioinfo3d.cs.tau.ac.il/MAPPIS), aims to analyze protein–protein interactions. It performs multiple alignment of protein–protein interfaces (PPIs), which are regions of interaction between two protein molecules. MAPPIS recognizes the spatially conserved physico-chemical interactions, which often involve energetically important hot-spot residues that are crucial for protein–protein associations. The input to the MAPPIS server is a set of protein-protein complexes. The output is a detailed list of the shared interaction properties of the interfaces

    ProBiS algorithm for detection of structurally similar protein binding sites by local structural alignment

    Get PDF
    Motivation: Exploitation of locally similar 3D patterns of physicochemical properties on the surface of a protein for detection of binding sites that may lack sequence and global structural conservation

    SMAP-WS: a parallel web service for structural proteome-wide ligand-binding site comparison

    Get PDF
    The proteome-wide characterization and analysis of protein ligand-binding sites and their interactions with ligands can provide pivotal information in understanding the structure, function and evolution of proteins and for designing safe and efficient therapeutics. The SMAP web service (SMAP-WS) meets this need through parallel computations designed for 3D ligand-binding site comparison and similarity searching on a structural proteome scale. SMAP-WS implements a shape descriptor (the Geometric Potential) that characterizes both local and global topological properties of the protein structure and which can be used to predict the likely ligand-binding pocket [Xie,L. and Bourne,P.E. (2007) A robust and efficient algorithm for the shape description of protein structures and its application in predicting ligand-binding sites. BMC bioinformatics, 8 (Suppl. 4.), S9.]. Subsequently a sequence order independent profile–profile alignment (SOIPPA) algorithm is used to detect and align similar pockets thereby finding protein functional and evolutionary relationships across fold space [Xie, L. and Bourne, P.E. (2008) Detecting evolutionary relationships across existing fold space, using sequence order-independent profile-profile alignments. Proc. Natl Acad. Sci. USA, 105, 5441–5446]. An extreme value distribution model estimates the statistical significance of the match [Xie, L., Xie, L. and Bourne, P.E. (2009) A unified statistical model to support local sequence order independent similarity searching for ligand-binding sites and its application to genome-based drug discovery. Bioinformatics, 25, i305–i312.]. These algorithms have been extensively benchmarked and shown to outperform most existing algorithms. Moreover, several predictions resulting from SMAP-WS have been validated experimentally. Thus far SMAP-WS has been applied to predict drug side effects, and to repurpose existing drugs for new indications. SMAP-WS provides both a user-friendly web interface and programming API for scientists to address a wide range of compute intense questions in biology and drug discovery

    Prediction of sub-cavity binding preferences using an adaptive physicochemical structure representation

    Get PDF
    Motivation: The ability to predict binding profiles for an arbitrary protein can significantly improve the areas of drug discovery, lead optimization and protein function prediction. At present, there are no successful algorithms capable of predicting binding profiles for novel proteins. Existing methods typically rely on manually curated templates or entire active site comparison. Consequently, they perform best when analyzing proteins sharing significant structural similarity with known proteins (i.e. proteins resulting from divergent evolution). These methods fall short when used to characterize the binding profile of a novel active site or one for which a template is not available. In contrast to previous approaches, our method characterizes the binding preferences of sub-cavities within the active site by exploiting a large set of known protein–ligand complexes. The uniqueness of our approach lies not only in the consideration of sub-cavities, but also in the more complete structural representation of these sub-cavities, their parametrization and the method by which they are compared. By only requiring local structural similarity, we are able to leverage previously unused structural information and perform binding inference for proteins that do not share significant structural similarity with known systems

    PoSSuM: a database of similar protein–ligand binding and putative pockets

    Get PDF
    Numerous potential ligand-binding sites are available today, along with hundreds of thousands of known binding sites observed in the PDB. Exhaustive similarity search for such vastly numerous binding site pairs is useful to predict protein functions and to enable rapid screening of target proteins for drug design. Existing databases of ligand-binding sites offer databases of limited scale. For example, SitesBase covers only ∼33 000 known binding sites. Inferring protein function and drug discovery purposes, however, demands a much more comprehensive database including known and putative-binding sites. Using a novel algorithm, we conducted a large-scale all-pairs similarity search for 1.8 million known and potential binding sites in the PDB, and discovered over 14 million similar pairs of binding sites. Here, we present the results as a relational database Pocket Similarity Search using Multiple-sketches (PoSSuM) including all the discovered pairs with annotations of various types. PoSSuM enables rapid exploration of similar binding sites among structures with different global folds as well as similar ones. Moreover, PoSSuM is useful for predicting the binding ligand for unbound structures, which provides important clues for characterizing protein structures with unclear functions. The PoSSuM database is freely available at http://possum.cbrc.jp/PoSSuM/

    HotRegion: a database of predicted hot spot clusters

    Get PDF
    Hot spots are energetically important residues at protein interfaces and they are not randomly distributed across the interface but rather clustered. These clustered hot spots form hot regions. Hot regions are important for the stability of protein complexes, as well as providing specificity to binding sites. We propose a database called HotRegion, which provides the hot region information of the interfaces by using predicted hot spot residues, and structural properties of these interface residues such as pair potentials of interface residues, accessible surface area (ASA) and relative ASA values of interface residues of both monomer and complex forms of proteins. Also, the 3D visualization of the interface and interactions among hot spot residues are provided. HotRegion is accessible at http://prism.ccbb.ku.edu.tr/hotregion

    Comprehensive structural classification of ligand binding motifs in proteins

    Get PDF
    Comprehensive knowledge of protein-ligand interactions should provide a useful basis for annotating protein functions, studying protein evolution, engineering enzymatic activity, and designing drugs. To investigate the diversity and universality of ligand binding sites in protein structures, we conducted the all-against-all atomic-level structural comparison of over 180,000 ligand binding sites found in all the known structures in the Protein Data Bank by using a recently developed database search and alignment algorithm. By applying a hybrid top-down-bottom-up clustering analysis to the comparison results, we determined approximately 3000 well-defined structural motifs of ligand binding sites. Apart from a handful of exceptions, most structural motifs were found to be confined within single families or superfamilies, and to be associated with particular ligands. Furthermore, we analyzed the components of the similarity network and enumerated more than 4000 pairs of ligand binding sites that were shared across different protein folds.Comment: 13 pages, 8 figure
    corecore