140 research outputs found

    An Assessment of the Efficiency of Dust Regional Modelling to Predict Saharan Dust Transport Episodes

    Get PDF
    Aerosol levels at Mediterranean Basin are significantly affected by desert dust that is eroded in North Africa and is transported northwards. This study aims to assess the performance of the Dust REgional Atmospheric Model (BSC-DREAM8b) in the prediction of dust outbreaks near the surface in Eastern Mediterranean. For this purpose, model PM10 predictions covering a 7-year period and PM10 observations at five surface monitoring sites in Greece are used. A quantitative criterion is set to select the significant dust outbreaks defined as those when the predicted PM10 surface concentration exceeds 12 μg/m3. The analysis reveals that significant dust transport is usually observed for 1–3 consecutive days. Dust outbreak seasons are spring and summer, while some events are also forecasted in autumn. The seasonal variability of dust transport events is different at Finokalia, where the majority of events are observed in spring and winter. Dust contributes by 19–25% to the near surface observed PM10 levels, which can be increased to more than 50 μg/m3 during dust outbreaks, inducing violations of the air quality standards. Dust regional modeling can be regarded as a useful tool for air quality managers when assessing compliance with air quality limit values

    Decadal regional air quality simulations over Europe in present climate: near surface ozone sensitivity to external meteorological forcing

    Get PDF
    Abstract. Regional climate-air quality decadal simulations over Europe were carried out with the RegCM3/CAMx modeling system for the time slice 1991–2000, in order to study the impact of different meteorological forcing on surface ozone. The RegCM3 regional climate model was firstly constrained by the ERA40 reanalysis dataset which is considered as an experiment with perfect meteorological boundary conditions and then it was constrained by the global circulation model ECHAM5. A number of meteorological parameters were examined including the 500 mb geopotential height, solar radiation, temperature, cloud liquid water path, planetary boundary layer height and surface wind. The different RegCM meteorological forcing resulted in changes of near surface ozone over Europe ranging between ± 4 ppb for winter and summer. The area showing the greatest sensitivity in O3 during winter is central and southern Europe while in summer central north continental Europe. The different meteorological forcing impacts on the atmospheric circulation, which in turn affects cloudiness and solar radiation, temperature, wind patterns and the meteorology depended biogenic emissions. For comparison reasons, the impact of chemical boundary conditions on surface ozone was additionally examined with a series of sensitivity studies, indicating that surface ozone changes are comparable to those caused by the different meteorological forcing. These findings suggest that, when it comes to regional climate-air quality simulations, the selection of external meteorological forcing can be as important as the selection of adequate chemical lateral boundary conditions

    Effects on surface atmospheric photo-oxidants over Greece during the total solar eclipse event of 29 March 2006

    Get PDF
    International audienceThis study investigates the effects of the total solar eclipse of 29 March 2006 on surface air-quality levels over Greece based on observations at a number of sites in conjunction with chemical box modelling and 3-D air-quality modelling. Emphasis is given on surface ozone and other photooxidants at four Greek sites Kastelorizo, Finokalia (Crete), Pallini (Athens) and Thessaloniki, which are located at gradually increasing distances from the path of the eclipse totality and are characterized by different air pollution levels. The eclipse offered the opportunity to test our understanding of air pollution build-up and the response of the gas-phase chemistry of photo-oxidants during a photolytical perturbation using both a photochemical box model and a regional air-quality offline model based on the modeling system WRF/CAMx. At the relatively unpolluted sites of Kastelorizo and Finokalia no clear impact of the solar eclipse on surface O3, NO2 and NO concentrations can be deduced from the observations and model simulations as the calculated changes in net ozone production rates between eclipse and non eclipse conditions are rather small compared to the ozone variability and hence the solar eclipse effects on ozone can be easily masked by transport. At the polluted sites of Thessaloniki and Pallini, the solar eclipse effects on O3, NO2 and NO concentrations are clearly revealed from both the measurements and 3-D air-quality modeling with the net effect being a decrease in O3 and NO and an increase in NO2 as NO2 formed from the reaction of O3 with NO while at the same time NO2 is not efficiently photolysed. It is evident from the 3-D air quality modeling over Greece that the maximum effects of the eclipse on O3, NO2 and NO are reflected at the large urban agglomerations of Athens, and Thessaloniki where the maximum of the emissions occur

    MODELING THE TRANS-ATLANTIC TRANSPORTATION OF SAHARAN DUST

    Get PDF
    In the present study we are simulating the trans-Atlantic transport of dust from Sahara to the South-Central America, using the regional climate model RegCM4 and its online dust scheme, for the year 2007. The simulated horizontal and vertical distributions of the mineral dust optical properties were evaluated against the LIVAS CALIPSO satellite dust product. The Trans-Atlantic dust transport is simulated adequately with RegCM4, but there are some spatial discrepancies. Dust optical thickness is overestimated in the eastern Sahara throughout the year by 0.1-0.2, while near the gulf of Guinea is underestimated during winter and spring. Although RegCM4 dust plume is located southern on winter and spring, it doesn't spatially match the dust optical thickness of LIVAS. In summer and autumn the vertical distribution of dust between 3-4km during the Trans-Atlantic transport is simulated by the model adequately up to 30ºW 40ºW longitude. However, during winter-spring RegCM4 misplaces dust loading into higher altitude. Finally, we discuss some possible reasons and mechanisms that might be responsible for the differences between the model and the observations

    Afforestation impact on soil temperature in regional climate model simulations over Europe

    Get PDF
    In the context of the first phase of the Coordinated Regional Climate Downscaling Experiment in the European domain (EURO-CORDEX) flagship plot study on Land Use and Climate Across Scales (LUCAS), we investigate the biophysical impact of afforestation on the seasonal cycle of soil temperature over the European continent with an ensemble of 10 regional climate models. For this purpose, each ensemble member performed two idealized land cover experiments in which Europe is covered either by forests or grasslands. The multi-model mean exhibits a reduction of the annual amplitude of soil temperature (AAST) due to afforestation over all European regions, although this is not a robust feature among the models. In the Mediterranean, the spread of simulated AAST response to afforestation is between −4 and +2 ∘C at 1 m below the ground, while in Scandinavia the inter-model spread ranges from −7 to +1 ∘C. We show that the large range in the simulated AAST response is due to the representation of the summertime climate processes and is largely explained by inter-model differences in leaf area index (LAI), surface albedo, cloud fraction and soil moisture, when all combined into a multiple linear regression. The changes in these drivers essentially determine the ratio between the increased radiative energy at surface (due to lower albedo in forests) and the increased sum of turbulent heat fluxes (due to mixing-facilitating characteristics of forests), and consequently decide the changes in soil heating with afforestation in each model. Finally, we pair FLUXNET sites to compare the simulated results with observation-based evidence of the impact of forest on soil temperature. In line with models, observations indicate a summer ground cooling in forested areas compared to open lands. The vast majority of models agree with the sign of the observed reduction in AAST, although with a large variation in the magnitude of changes. Overall, we aspire to emphasize the biophysical effects of afforestation on soil temperature profile with this study, given that changes in the seasonal cycle of soil temperature potentially perturb crucial biochemical processes. Robust knowledge on biophysical impacts of afforestation on soil conditions and its feedbacks on local and regional climate is needed in support of effective land-based climate mitigation and adaption policies

    Global model simulations of air pollution during the 2003 European heat wave

    Get PDF
    Three global Chemistry Transport Models - MOZART, MOCAGE, and TM5 - as well as MOZART coupled to the IFS meteorological model including assimilation of ozone (O-3) and carbon monoxide (CO) satellite column retrievals, have been compared to surface measurements and MOZAIC vertical profiles in the troposphere over Western/Central Europe for summer 2003. The models reproduce the meteorological features and enhancement of pollution during the period 2-14 August, but not fully the ozone and CO mixing ratios measured during that episode. Modified normalised mean biases are around -25% (except similar to 5% for MOCAGE) in the case of ozone and from -80% to -30% for CO in the boundary layer above Frankfurt. The coupling and assimilation of CO columns from MOPITT overcomes some of the deficiencies in the treatment of transport, chemistry and emissions in MOZART, reducing the negative biases to around 20%. The high reactivity and small dry deposition velocities in MOCAGE seem to be responsible for the overestimation of O-3 in this model. Results from sensitivity simulations indicate that an increase of the horizontal resolution to around 1 degrees x1 degrees and potential uncertainties in European anthropogenic emissions or in long-range transport of pollution cannot completely account for the underestimation of CO and O-3 found for most models. A process-oriented TM5 sensitivity simulation where soil wetness was reduced results in a decrease in dry deposition fluxes and a subsequent ozone increase larger than the ozone changes due to the previous sensitivity runs. However this latest simulation still underestimates ozone during the heat wave and overestimates it outside that period. Most probably, a combination of the mentioned factors together with underrepresented biogenic emissions in the models, uncertainties in the modelling of vertical/horizontal transport processes in the proximity of the boundary layer as well as limitations of the chemistry schemes are responsible for the underestimation of ozone (overestimation in the case of MOCAGE) and CO found in the models during this extreme pollution event

    A deep stratosphere-to-troposphere ozone transport event over Europe simulated in CAMS global and regional forecast systems: analysis and evaluation

    Get PDF
    Stratosphere-to-troposphere transport (STT) is an important natural source of tropospheric ozone, which can occasionally influence ground-level ozone concentrations relevant for air quality. Here, we analyse and evaluate the Copernicus Atmosphere Monitoring Service (CAMS) global and regional forecast systems during a deep STT event over Europe for the time period from 4 to 9 January 2017. The predominant synoptic condition is described by a deep upper level trough over eastern and central Europe, favouring the formation of tropopause folding events along the jet stream axis and therefore the intrusion of stratospheric ozone into the troposphere. Both global and regional CAMS forecast products reproduce the hook-shaped streamer of ozone-rich and dry air in the middle troposphere depicted from the observed satellite images of water vapour. The CAMS global model successfully reproduces the folding of the tropopause at various European sites, such as Trapani (Italy), where a deep folding down to 550&thinsp;hPa is seen. The stratospheric ozone intrusions into the troposphere observed by WOUDC ozonesonde and IAGOS aircraft measurements are satisfactorily forecasted up to 3 days in advance by the CAMS global model in terms of both temporal and vertical features of ozone. The fractional gross error (FGE) of CAMS ozone day 1 forecast between 300 and 500&thinsp;hPa is 0.13 over Prague, while over Frankfurt it is 0.04 and 0.19, highlighting the contribution of data assimilation, which in most cases improves the model performance. Finally, the meteorological and chemical forcing of CAMS global forecast system in the CAMS regional forecast systems is found to be beneficial for predicting the enhanced ozone concentrations in the middle troposphere during a deep STT event.</p

    Global model simulations of air pollution during the 2003 European heat wave

    Get PDF
    Three global Chemistry Transport Models – MOZART, MOCAGE, and TM5 – as well as MOZART coupled to the IFS meteorological model including assimilation of ozone (O&lt;sub&gt;3&lt;/sub&gt;) and carbon monoxide (CO) satellite column retrievals, have been compared to surface measurements and MOZAIC vertical profiles in the troposphere over Western/Central Europe for summer 2003. The models reproduce the meteorological features and enhancement of pollution during the period 2–14 August, but not fully the ozone and CO mixing ratios measured during that episode. Modified normalised mean biases are around &amp;minus;25% (except ~5% for MOCAGE) in the case of ozone and from &amp;minus;80% to &amp;minus;30% for CO in the boundary layer above Frankfurt. The coupling and assimilation of CO columns from MOPITT overcomes some of the deficiencies in the treatment of transport, chemistry and emissions in MOZART, reducing the negative biases to around 20%. The high reactivity and small dry deposition velocities in MOCAGE seem to be responsible for the overestimation of O&lt;sub&gt;3&lt;/sub&gt; in this model. Results from sensitivity simulations indicate that an increase of the horizontal resolution to around 1&amp;deg;&amp;times;1&amp;deg; and potential uncertainties in European anthropogenic emissions or in long-range transport of pollution cannot completely account for the underestimation of CO and O&lt;sub&gt;3&lt;/sub&gt; found for most models. A process-oriented TM5 sensitivity simulation where soil wetness was reduced results in a decrease in dry deposition fluxes and a subsequent ozone increase larger than the ozone changes due to the previous sensitivity runs. However this latest simulation still underestimates ozone during the heat wave and overestimates it outside that period. Most probably, a combination of the mentioned factors together with underrepresented biogenic emissions in the models, uncertainties in the modelling of vertical/horizontal transport processes in the proximity of the boundary layer as well as limitations of the chemistry schemes are responsible for the underestimation of ozone (overestimation in the case of MOCAGE) and CO found in the models during this extreme pollution event

    Designing AfriCultuReS services to support food security in Africa

    Get PDF
    ABSTRACT: Earth observation (EO) data are increasingly being used to monitor vegetation and detect plant growth anomalies due to water stress, drought, or pests, as well as to monitor water availability, weather conditions, disaster risks, land use/land cover changes and to evaluate soil degradation. Satellite data are provided regularly by worldwide organizations, covering a wide variety of spatial, temporal and spectral characteristics. In addition, weather, climate and crop growth models provide early estimates of the expected weather and climatic patterns and yield, which can be improved by fusion with EO data. The AfriCultuReS project is capitalizing on the above to contribute towards an integrated agricultural monitoring and early warning system for Africa, supporting decision making in the field of food security. The aim of this article is to present the design of EO services within the project, and how they will support food security in Africa. The services designed cover the users' requirements related to climate, drought, land, livestock, crops, water, and weather. For each category of services, results from one case study are presented. The services will be distributed to the stakeholders and are expected to provide a continuous monitoring framework for early and accurate assessment of factors affecting food security in Africa.This paper is part of the AfriCultuReS project "Enhancing Food Security in African Agricultural Systems with the Support of Remote Sensing", which received funding from the European Union's Horizon 2020 Research and Innovation Framework Programme under grant agreement No. 77465

    Investigating the representation of heatwaves from an ensemble of km-scale regional climate simulations within CORDEX-FPS convection

    Get PDF
    Heatwaves (HWs) are high-impact phenomena stressing both societies and ecosystems. Their intensity and frequency are expected to increase in a warmer climate over many regions of the world. While these impacts can be wide-ranging, they are potentially influenced by local to regional features such as topography, land cover, and urbanization. Here, we leverage recent advances in the very high-resolution modelling required to elucidate the impacts of heatwaves at these fine scales. Further, we aim to understand how the new generation of km-scale regional climate models (RCMs) modulates the representation of heatwaves over a well-known climate change hot spot. We analyze an ensemble of 15 convection-permitting regional climate model (CPRCM, ~ 2–4 km grid spacing) simulations and their driving, convection-parameterized regional climate model (RCM, ~ 12–15 km grid spacing) simulations from the CORDEX Flagship Pilot Study on Convection. The focus is on the evaluation experiments (2000–2009) and three subdomains with a range of climatic characteristics. During HWs, and generally in the summer season, CPRCMs exhibit warmer and drier conditions than their driving RCMs. Higher maximum temperatures arise due to an altered heat flux partitioning, with daily peaks up to ~ 150 W/m2^{2} larger latent heat in RCMs compared to the CPRCMs. This is driven by a 5–25% lower soil moisture content in the CPRCMs, which is in turn related to longer dry spell length (up to double). It is challenging to ascertain whether these differences represent an improvement. However, a point-scale distribution-based maximum temperature evaluation, suggests that this CPRCMs warmer/drier tendency is likely more realistic compared to the RCMs, with ~ 70% of reference sites indicating an added value compared to the driving RCMs, increasing to 95% when only the distribution right tail is considered. Conversely, a CPRCMs slight detrimental effect is found according to the upscaled grid-to-grid approach over flat areas. Certainly, CPRCMs enhance dry conditions, with knock-on implications for summer season temperature overestimation. Whether this improved physical representation of HWs also has implications for future changes is under investigation
    • …
    corecore