252 research outputs found

    Development of Drugs for Nontuberculous Mycobacterial Disease:Clinicians’ Interpretation of a US Food and Drug Administration Workshop

    Get PDF
    The US Food and Drug Administration convened a workshop to discuss clinical trial design challenges and considerations related to the treatment of nontuberculous mycobacterial pulmonary disease, to include topics such as clinical trial end points, duration, and populations. The clinicians participating in the meeting provide here their interpretation of the discussion, which included US Food and Drug Administration and industry representatives. The treatment of nontuberculous mycobacterial pulmonary disease typically includes multiple antibiotics for a prolonged period and can be difficult to tolerate; there is a great need for new treatment options. Most individuals have a microbiologic response to therapy, but data correlating decreasing bacillary load with patient-reported outcomes or measured functional improvement are lacking. Accordingly, trial designs for new therapeutic agents should incorporate both microbiologic and clinical outcome measures and select appropriate study candidates with capacity for measurable change of such outcome measures. The need for shorter study designs, early primary end points, and placebo control arms was highlighted during the workshop

    Frequency and Fitness Consequences of Bacteriophage Φ6 Host Range Mutations

    Full text link
    Viruses readily mutate and gain the ability to infect novel hosts, but few data are available regarding the number of possible host range-expanding mutations allowing infection of any given novel host, and the fitness consequences of these mutations on original and novel hosts. To gain insight into the process of host range expansion, we isolated and sequenced 69 independent mutants of the dsRNA bacteriophage Φ6 able to infect the novel host, Pseudomonas pseudoalcaligenes. In total, we found at least 17 unique suites of mutations among these 69 mutants. We assayed fitness for 13 of 17 mutant genotypes on P. pseudoalcaligenes and the standard laboratory host, P. phaseolicola. Mutants exhibited significantly lower fitnesses on P. pseudoalcaligenes compared to P. phaseolicola. Furthermore, 12 of the 13 assayed mutants showed reduced fitness on P. phaseolicola compared to wildtype Φ6, confirming the prevalence of antagonistic pleiotropy during host range expansion. Further experiments revealed that the mechanistic basis of these fitness differences was likely variation in host attachment ability. In addition, using computational protein modeling, we show that host-range expanding mutations occurred in hotspots on the surface of the phage\u27s host attachment protein opposite a putative hydrophobic anchoring domain

    Large Scale Gene Expression Profiles of Regenerating Inner Ear Sensory Epithelia

    Get PDF
    Loss of inner ear sensory hair cells (HC) is a leading cause of human hearing loss and balance disorders. Unlike mammals, many lower vertebrates can regenerate these cells. We used cross-species microarrays to examine this process in the avian inner ear. Specifically, changes in expression of over 1700 transcription factor (TF) genes were investigated in hair cells of auditory and vestibular organs following treatment with two different damaging agents and regeneration in vitro. Multiple components of seven distinct known signaling pathways were clearly identifiable: TGFβ, PAX, NOTCH, WNT, NFKappaB, INSULIN/IGF1 and AP1. Numerous components of apoptotic and cell cycle control pathways were differentially expressed, including p27KIP and TFs that regulate its expression. A comparison of expression trends across tissues and treatments revealed identical patterns of expression that occurred at identical times during regenerative proliferation. Network analysis of the patterns of gene expression in this large dataset also revealed the additional presence of many components (and possible network interactions) of estrogen receptor signaling, circadian rhythm genes and parts of the polycomb complex (among others). Equal numbers of differentially expressed genes were identified that have not yet been placed into any known pathway. Specific time points and tissues also exhibited interesting differences: For example, 45 zinc finger genes were specifically up-regulated at later stages of cochlear regeneration. These results are the first of their kind and should provide the starting point for more detailed investigations of the role of these many pathways in HC recovery, and for a description of their possible interactions

    Lactobacillus sakei suppresses collagen-induced arthritis and modulates the differentiation of T helper 17 cells and regulatory B cells

    Get PDF
    Abstract Background To evaluate the immunomodulatory effect of Lactobacillus sakei in a mouse model of rheumatoid arthritis (RA) and in human immune cells. Methods We evaluated whether L. sakei reduced the severity of collagen-induced arthritis (CIA) and modulated interleukin (IL)-17 and IL-10 levels, as well as whether it affected the differentiation of CD4+ T cells and regulatory B cells. We evaluated osteoclastogenesis after culturing bone marrow-derived mononuclear cells with L. sakei. Results The differentiation of T helper 17 cells and the serum level of IL-17 were suppressed by L. sakei in both human peripheral blood mononuclear cells and mouse splenocytes. The serum level of IL-10 was significantly increased in the L. sakei-treated group, whereas the regulatory T cell population was unchanged. The population of regulatory B cells significantly increased the in L. sakei-treated group. Oral administration of L. sakei reduced the arthritis incidence and score in mice with CIA. Finally, osteoclastogenesis and the mRNA levels of osteoclast-related genes were suppressed in the L. sakei-treated group. Conclusion L. sakei exerted an anti-inflammatory effect in an animal model of RA, regulated Th17 and regulatory B cell differentiation, and suppressed osteoclastogenesis. Our findings suggest that L. sakei has therapeutic potential for RA

    Clustering Imputation for Air Pollution Data

    Get PDF
    Air pollution is a global problem. The assessment of air pollution concentration data is important for evaluating human exposure and the associated risk to health. Unfortunately, air pollution monitoring stations often have periods of missing data or do not measure all pollutants. In this study, we experiment with different approaches to estimate the whole time series for a missing pollutant at a monitoring station as well as missing values within a time series. The main goal is to reduce the uncertainty in air quality assessment. To develop our approach we combine single and multiple imputation, nearest neighbour geographical distance methods and a clustering algorithm for time series. For each station that measures ozone, we produce various imputations for this pollutant and measure the similarity/error between the imputed and the real values. Our results show that imputation by average based on clustering results combined with multiple imputation for missing values is the most reliable and is associated with lower average error and standard deviation

    Epigenetic and integrative cross-omics analyses of cerebral white matter hyperintensities on MRI

    Get PDF
    Cerebral white matter hyperintensities on MRI are markers of cerebral small vessel disease, a major risk factor for dementia and stroke. Despite the successful identification of multiple genetic variants associated with this highly heritable condition, its genetic architecture remains incompletely understood. More specifically, the role of DNA methylation has received little attention. We investigated the association between white matter hyperintensity burden and DNA methylation in blood at approximately 450,000 CpG sites in 9,732 middle-aged to older adults from 14 community-based studies. Single-CpG and region-based association analyses were carried out. Functional annotation and integrative cross-omics analyses were performed to identify novel genes underlying the relationship between DNA methylation and white matter hyperintensities. We identified 12 single-CpG and 46 region-based DNA methylation associations with white matter hyperintensity burden. Our top discovery single CpG, cg24202936 (P = 7.6 × 10-8), was associated with F2 expression in blood (P = 6.4 × 10-5), and colocalized with FOLH1 expression in brain (posterior probability =0.75). Our top differentially methylated regions were in PRMT1 and in CCDC144NL-AS1, which were also represented in single-CpG associations (cg17417856 and cg06809326, respectively). Through Mendelian randomization analyses cg06809326 was putatively associated with white matter hyperintensity burden (P = 0.03) and expression of CCDC144NL-AS1 possibly mediated this association. Differentially methylated region analysis, joint epigenetic association analysis, and multi-omics colocalization analysis consistently identified a role of DNA methylation near SH3PXD2A, a locus previously identified in genome-wide association studies of white matter hyperintensities. Gene set enrichment analyses revealed functions of the identified DNA methylation loci in the blood-brain barrier and in the immune response. Integrative cross-omics analysis identified 19 key regulatory genes in two networks related to extracellular matrix organization, and lipid and lipoprotein metabolism. A drug repositioning analysis indicated antihyperlipidemic agents, more specifically peroxisome proliferator-activated receptor alpha, as possible target drugs for white matter hyperintensities. Our epigenome-wide association study and integrative cross-omics analyses implicate novel genes influencing white matter hyperintensity burden, which converged on pathways related to the immune response and to a compromised blood brain barrier possibly due to disrupted cell-cell and cell-extracellular matrix interactions. The results also suggest that antihyperlipidemic therapy may contribute to lowering risk for white matter hyperintensities possibly through protection against blood brain barrier disruption

    Aag DNA Glycosylase Promotes Alkylation-Induced Tissue Damage Mediated by Parp1

    Get PDF
    Alkylating agents comprise a major class of front-line cancer chemotherapeutic compounds, and while these agents effectively kill tumor cells, they also damage healthy tissues. Although base excision repair (BER) is essential in repairing DNA alkylation damage, under certain conditions, initiation of BER can be detrimental. Here we illustrate that the alkyladenine DNA glycosylase (AAG) mediates alkylation-induced tissue damage and whole-animal lethality following exposure to alkylating agents. Aag-dependent tissue damage, as observed in cerebellar granule cells, splenocytes, thymocytes, bone marrow cells, pancreatic β-cells, and retinal photoreceptor cells, was detected in wild-type mice, exacerbated in Aag transgenic mice, and completely suppressed in Aag−/− mice. Additional genetic experiments dissected the effects of modulating both BER and Parp1 on alkylation sensitivity in mice and determined that Aag acts upstream of Parp1 in alkylation-induced tissue damage; in fact, cytotoxicity in WT and Aag transgenic mice was abrogated in the absence of Parp1. These results provide in vivo evidence that Aag-initiated BER may play a critical role in determining the side-effects of alkylating agent chemotherapies and that Parp1 plays a crucial role in Aag-mediated tissue damage.National Institutes of Health (U.S.) (NIH grant R01-CA075576)National Institutes of Health (U.S.) (NIH grant R01-CA055042)National Institutes of Health (U.S.) (NIH grant R01-CA149261)National Institutes of Health (U.S.) (NIH grant P30-ES00002)National Institutes of Health (U.S.) (NIH grant P30-ES02109)National Center for Research Resources (U.S.) (grant number M01RR-01066)National Center for Research Resources (U.S.) (grant number UL1 RR025758, Harvard Clinical and Translational Science Center

    Trans-ethnic Meta-analysis and Functional Annotation Illuminates the Genetic Architecture of Fasting Glucose and Insulin

    Get PDF
    Knowledge of the genetic basis of the type 2 diabetes (T2D)-related quantitative traits fasting glucose (FG) and insulin (FI) in African ancestry (AA) individuals has been limited. In non-diabetic subjects of AA (n = 20,209) and European ancestry (EA; n = 57,292), we performed trans-ethnic (AA+EA) fine-mapping of 54 established EA FG or FI loci with detailed functional annotation, assessed their relevance in AA individuals, and sought previously undescribed loci through trans-ethnic (AA+EA) meta-analysis. We narrowed credible sets of variants driving association signals for 22/54 EA-associated loci; 18/22 credible sets overlapped with active islet-specific enhancers or transcription factor (TF) binding sites, and 21/22 contained at least one TF motif. Of the 54 EA-associated loci, 23 were shared between EA and AA. Replication with an additional 10,096 AA individuals identified two previously undescribed FI loci, chrX FAM133A (rs213676) and chr5 PELO (rs6450057). Trans-ethnic analyses with regulatory annotation illuminate the genetic architecture of glycemic traits and suggest gene regulation as a target to advance precision medicine for T2D. Our approach to utilize state-of-the-art functional annotation and implement trans-ethnic association analysis for discovery and fine-mapping offers a framework for further follow-up and characterization of GWAS signals of complex trait loc
    corecore