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Abstract. Air pollution is a global problem. The assessment of air pollu-
tion concentration data is important for evaluating human exposure and
the associated risk to health. Unfortunately, air pollution monitoring sta-
tions often have periods of missing data or do not measure all pollutants.
In this study, we experiment with different approaches to estimate the
whole time series for a missing pollutant at a monitoring station as well
as missing values within a time series. The main goal is to reduce the un-
certainty in air quality assessment.
To develop our approach we combine single and multiple imputation,
nearest neighbour geographical distance methods and a clustering algo-
rithm for time series. For each station that measures ozone, we produce
various imputations for this pollutant and measure the similarity/error
between the imputed and the real values. Our results show that imputa-
tion by average based on clustering results combined with multiple impu-
tation for missing values is the most reliable and is associated with lower
average error and standard deviation.

Keywords: Air Quality · Uncertainty · Time Series Clustering · Imputa-
tion.

1 Introduction

Air is one of the essential natural resources not only for humans but for all life
on this planet. With the development of economies throughout the world and
population increases in cities, environmental problems involving air pollution
have attracted increasing attention. Air pollution is defined as the contamina-
tion of the atmosphere by substances called pollutants. According to Kampa
and Castanas [11], the air pollutants that negatively affect human health and
the environment include carbon monoxide (CO), particulate matter (PM2.5 and
PM10), ozone (O3), nitrogen dioxide (NO2) and sulfur dioxide (SO2).

There are several detrimental effects of air pollution on health and the en-
vironment and its effect on human health in particular attracts considerable
research effort. For example, several epidemiological studies have proven the
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associations between air pollutants and asthma e.g. [6], mortality e.g. [28] and
morbidity e.g. [7]. The World Health Organization [26], estimated that 4.2 mil-
lion premature deaths per year are linked to air pollution.

The air pollutant concentrations that are used to determine the air quality
index in the UK are O3, NO2, SO2, PM10, and PM2.5. These are measured at
the Automatic Urban and Rural Network (AURN), which has 168 stations dis-
tributed around the UK. There are 165 stations that measure NO2, 86 stations
that measure PM2.5, 82 stations that measure PM10, and 83 stations that mea-
sure O3. Stations are categorized by their environmental type to one of the fol-
lowing: rural, urban background, roadside, and industrial. Not all the AURN
stations report all pollutants, as this mainly depends on the purpose of the mon-
itoring station. Even though a station measures a particular air pollutant there
are times them no data are reported, for example during periods of instrument
failure or servicing. Together this results in high levels of missing data. There-
fore current air quality assessments are based on high levels of uncertainty. This
may lead to incorrect policy decisions, with further negative environmental and
health consequences [8]. Our aim is therefore to investigate robust methods for
estimating the missing observations.

In this study we focus on imputation of ozone (O3), one of the main pollu-
tants influencing pollution levels in the UK. We apply two different approaches
to estimate the missing pollutant in a station: an imputation based on geograph-
ical distance, and one based on clustering. We then assess which results in more
robust and accurate imputation. In the long term we hope that our imputed pol-
lutant values, if accurate, will enable us to calculate new air quality indices and
to show where more measurements may be beneficial.

2 Related work

In the context of environmental data various techniques have been proposed to
impute missing values using single imputation such as mean [14,16]; Nearest
Neighbor (NN) algorithms [29,3]; linear interpolation [2] and Expectation Max-
imization (EM) [10]. Other authors ([18,16]) have replaced each missing value of
PM10 by the mean of the two data points before and after the missing value. In
a similar study, Luong et al. [14] used the daily mean of each variable to replace
the missing values. Their dataset contains temperature, PM10, PM2.5, NO2, and
SO2.

Zheng et al. [29] used station spatial or temporal neighbours to fill the miss-
ing values in each monitoring station. Then, they built a model to forecast the
readings of an air quality monitoring station over the next 48 hours for PM2.5.
Azid et al, [3] used NN based on distance to impute the missing data.

Arroyo et al. [2] used multiple regression techniques (linear and nonlinear)
and artificial neural network models to impute the missing values in the daily
data averages of ozone based on the concentrations of five other pollutants:
NO, NO2, PM10, SO2, and CO. Jhun et al. [9] estimated the missing data for
an O3 hourly trend dataset using criteria in the dataset such as the hour of the
day, season at each region, and the seasonal pattern of the trend. The Expecta-



Clustering Imputation for Air Pollution Data 3

tion Maximization (EM) algorithm is often used to fill the missing data using
available data in the cases when the missing data has a linear relation with the
available data [10]. Some other studies deleted any incomplete data and only
considered data that are captured between 50% to 75% of the time [9,27].

3 Problem definition

3.1 Air Quality

The quality of air is negatively affected by particles and gases which can be
influenced by several factors including location, time, and other variables [12].
In the UK, air quality is quantified using the Daily Air Quality Index (DAQI)
which is calculated using the concentrations of five air pollutants namely nitro-
gen dioxide (NO2), sulphur dioxide (SO2), ozone (O3), particles < 2.5 (PM2.5),
and particles < 10 (PM10). This index is numbered from 1 to 10, and divided
into four bands: ‘low’ (1–3), ‘moderate’ (4–6), ‘high’ (7–9) and ‘very high’ (10).
An index value is initially assigned for each pollutant depending on its mea-
sured concentration. Then the DAQI is taken to be the highest value assigned
to a pollutant. Periods of poor air quality can be identified using this index. Air
quality is negatively correlated with the DAQI index, meaning that a higher
DAQI index represents worse air quality (for more details https://uk-air.
defra.gov.uk/air-pollution/).

There are DAQI values calculated for different stations and geographical
areas. However, sufficient data must be available for this. For example, to cal-
culate the particles( PM10 , PM2.5 ) daily mean contributing to the index, 75%
of the daily observations must be captured; otherwise, the pollutant is consid-
ered as missing that day. Moreover if there is no measurement for a pollutant,
then the DAQI is based on the concentrations of just those pollutants measured.
This means that if, for example, the PM10 concentration was such that it had the
highest index for an individual pollutant, but it’s concentration was not mea-
sured, then the DAQI, which would be determined by the measured pollutant
with highest index, would give an unrealistically low value. This would give
the impression that the air quality is better than it actually is.

3.2 Data Imputation Methods

To impute the missing data, there are two main methods available: single im-
putation and multiple imputation. In single imputation each missing value is
imputed by only one estimated value. An easy though naive imputation is to
replace with the mean or most commonly occurring value [1]. The main draw-
back of this method is that does not reflect the uncertainty inherent in missing
data [21].

Multiple imputation is a statistical technique, that replaces each missing
value with a set of plausible (n) values. The results of the multiple imputation
methods are (n) datasets [22]. The differences between these datasets reflect the
uncertainty of the missing values [25].

https://uk-air.defra.gov.uk/air-pollution/
https://uk-air.defra.gov.uk/air-pollution/
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One of the most effective multiple imputation methods is Multivariate Im-
putation via Chained Equations (MICE), also known as Sequential Regression
multiple imputation [19]. It is based on Fully Conditional Specification (FCS).
Each incomplete variable is imputed by a separate model on a variable-by-
variable basis so each variable can be modeled according to its distribution. For
example, continuous variables can be modeled using linear regression, binary
variables modeled using logistic regression and categorical data using polyto-
mous regression [25]. For a time series (TS), predictive mean matching (pmm)
can be used in the imputation process [4].

3.3 Imputation of Air Quality Measurements

For any given station, j, and pollutant i we can approximate the pollutant con-
centration Pj

i over time using a number of methods. For example, since geo-
graphical distance or similarity in the type of station may be relevant we could
construct a nearest-neighbour approach based on similarity or distance mea-
sures. Alternatively, we can use a form of clustering or grouping of stations to
obtain values from other stations in the same cluster which appear to be most
similar to the j station.

3.4 Evaluation

If real values are known, we can compare our imputation to those real values in
order to evaluate which imputation method works best. Hence, for our experi-
mental set up we take each existing Time Series (TS) for a given pollutant and
station, Pj

i in turn, and impute it by the various methods to obtain an imputed

TS, PI j
i . This enables evaluation with a ’ground truth’.

We can compare the real values to the imputed values by a number of mea-
sures including distance and regression error measures. We used the Root mean
squared error (RMSE), which measures the average magnitude of the errors be-
tween the actual and the imputed data. The RMSE is defined as:

RMSE =

√√√√ 1
N

N

∑
i=1

(x̂i − xi)2 (1)

where in our case xi represent the observed data points and x̂i represent the
imputed values.

The method that gives the lowest error on average for all stations (i.e. im-
puted TS) will be the considered the best method. Note that the best methods
may change from one pollutant to another and may be affected by other factors
such as station type (e.g. urban background, rural and roadside) or frequency
of data measurement (e.g. hourly, daily).

To provide a more robust testing scenario we separate the ’model building’
stage for the imputation from the testing stage. We use an initial data period of
three years as a training set to build the imputations, and then impute on the
next year of the TS to evaluate goodness of fit.
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4 Proposed Methods

We have two levels of missing data in our TS: partial and total. The first corre-
sponds to missing observations within the TS for a given pollutant. The second
corresponds to a pollutant not being measured at all for the station.

4.1 Imputing Missing Observations

We imputed the missing observations of a measured pollutant in each station
using single and multiple imputation methods; then we applied a TS clustering
algorithm to each complete dataset. For single imputation, we used a Simple
Moving Average (SMA) method. This method replaces each missing value us-
ing a weighted moving average. The mean value in this method is calculated
from an equal number of observations on either side of a central missing value;
the user can identify the length of that window [15]. In our experiment, we
set the window length to 30, so the missing value is replaced by the monthly
moving average before and after the missing value.

For multiple imputations, we used MICE to impute the missing value with
n different values. In our experiment, we set n=5.

4.2 Imputing Missing Pollutant Time Series

4.2.1 Nearest (geographical) Neighbours imputation To impute the miss-
ing pollutant Pi at station j, we first looked at geographically close stations.
For this, we measured the geographic distance between station j and all other
stations that measure pollutant Pi using the Harvison metric which calculates
geographic distance on earth based on longitude and latitude as follows:

a = sin2(∆ϕ/2) + cos ϕ1. cos ϕ2. sin2(∆λ/2)

c = 2.(
√

a,
√

1− a)
d = R.c

(2)

where ϕ represents latitude, λ represents longitude, and R is earth’s radius
(mean radius = 6,371km).

Then to impute pollutant Pi for station j we use:

– The nearest neighbour (1NN) using the Harvison distance to station j.
– The average of the two nearest neighbours (2NN) to station j.

4.2.2 Clustering for imputation Clustering requires a measure of similarity
or distance between objects, points, groups, or TS. In this exercise, we experi-
mented with two distance metrics suited to TS.

Dynamic Time Warping (DTW) is a distance measure that is used to find the
optimal alignment (shortest path) that minimizes the sum of distances between
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two TS. It was proposed by Sakoe and Chiba [23]. It is an extension of the Eu-
clidean Distance measure (ED) that offers a non-linear alignment between two
series.

Shape-Based Distance (SBD) is a faster alternative to DTW, and is based on
the cross-correlation with coefficient normalization (NCCc) sequence between
two series. It was proposed as part of the k-Shape clustering algorithm by Pa-
parrizos et al. [17] and for its application the TS data should have appropriate
amplitudes, or be z-normalized in order to get better clustering results using
SBD metric. The SBD distance is calculated by the following formula:

SBD(X, Y) = 1− max(NCCc(x, y))
‖x‖2‖y‖2

(3)

where ‖.‖2 is the l2 norm of the series calculated as the square root of the
sum of the squared vector values. SBD range lies between 0 and 2, with 0 indi-
cating perfect similarity [24].

In our experiment, SBD gave well separated clusters that were more com-
pact than those obtained using DTW, so we report it in our results.

Once we have defined a distance measure a clustering algorithm will group
objects according to their distance/similarity. Partition clustering algorithms
divide the data points into non-overlapping subsets/clusters. The best-known
partitioning algorithm is the k-medoids, also called Partitioning Around Medoids
(PAM). It was proposed by Kaufman and Rousseeuw [13]. The cluster medoids
act as the cluster ‘centers’, which are the most representative objects of a cluster.
The average dissimilarity between medoids and all data points in the cluster is
minimised. The concept of cluster medoids is similar to cluster centroids, but
medoids are always members of the data set and may not be located at the
center of the cluster, whereas centroids may not correspond to real objects.

PAM requires us to identify the number of the cluster (K) before running the
algorithm. To do that, we used Silhouette index (Sil), which is a well-known
measurement for estimating the number of clusters in a dataset proposed by
Rousseeuw et al. [20].

Hence we used PAM as a clustering algorithm to produce a clustering of
the stations. If station j belongs to cluster Ci, given the measured pollutant over
time, then, to impute pollutant Pi based on the clustering results, we use:

– The cluster medoid, (CM), to impute the missing pollutants at station j, Pj
i .

– The average of pollutant Pi in cluster Ci, (CA) which is the daily average of
pollutant Pi in all the stations that fall in this cluster.

4.3 Experimental Framework

All our proposed methods were implemented in R. We divide our experiment
into two phases: the first phase is imputation of missing observations and clus-
tering process based on the training set as shown in Fig. 1. In general, the
clustering results obtained from each individual dataset created by MICE are
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slightly different hence we merged them into one final clustering result using
the majority voting. Majority voting [5] is a simple ensemble technique which
chooses the cluster for a station chosen by the majority of the clustering results.
The first stage results in a set of complete TS and clustering results.

Fig. 1: Phase 1: TS missing observations imputation and clustering process.

The second phase is our proposed imputation method for TS in the test pe-
riod, as shown in Fig. 2. The imputation of missing observations takes place for
the test data as it did for the train data, however in the test set we combined the
MICE datasets into one by averaging the n imputed values for each individual
observation creating one value. Then, based on the clustering results from the
first phase, we assigned a cluster number and cluster medoids for each station.
Then the clustering results and NN imputation (1NN and 2NN) are used to
produce whole imputed TS for each station.

Fig. 2: phase 2 : Air pollutant imputation methods.
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5 Air pollutants concentrations Dataset

The dataset generated at AURN stations include multivariate TS data that show
the hourly concentrations of different air pollutants. In this study we only fo-
cused on stations that measure ozone. The data can be obtained from https://
uk-air.defra.gov.uk/data/data_selector. The observations we download
from each station included date, time, hourly pollutant concentration for each
pollutant measured at the station, and Status (R =Ratified, P=Provisional, P*=As
supplied).

In total, there are 83 stations around the UK, in which the ozone (O3)is mea-
sured. We removed 18 stations that have more than 25% of missing data. In total
we included 65 stations in our analysis. Fig. 3, shows the geographical distri-
bution of these stations. We divided the dataset into two parts: the training set
including observations for a period of three years (2015-2017); and the test set
including the observations of the following year (2018).

Fig. 3: Geographical distribution of ozone monitoring stations in the UK used in the
experiment.

6 Results

Although the optimal number was always 2, this did not provide us with a
sufficiently granular clustering result. We used in each case the second best
number of clusters which was 13 using SMA and 7 using MICE. For MICE, the
optimal number of clusters did not vary for the 5 datasets. The visualisation of
the clusters obtained are shown in Fig. 4. As can be observed, even though we
only used the pollutant concentrations as TS to cluster the stations using the
temporal similarity as measured by SBD, the results of the clustering show that
there is a spatial (geographical) correlation between stations in each cluster.

According to our 4 described methods, using the Cluster Medoid (CM), the
Cluster average (CA), the 1NN (1NN) and the average of the 2NN (2NN), we
created 8 different imputed TS, 4 for the SMA dataset and 4 for the combined
MICE datasets. We evaluate those by calculating the RMSE to measure the dif-

https://uk-air.defra.gov.uk/data/data_selector
https://uk-air.defra.gov.uk/data/data_selector


Clustering Imputation for Air Pollution Data 9

(A) Clustering results of SMA dataset. (B) Clustering results of the combination of
MICE datasets clustering.

Fig. 4: Clustering results of training datasets using SMA and MICE imputation methods.

ference between the imputed and the real data for each station. For each sta-
tion, we ranked our imputation methods for each dataset based on the value
of RMSE from smallest to largest, hence the best imputation method for SMA
will have a rank of 1, etc., and similarly for the MICE combined dataset. We then
compare these methods based on the average ranks to select the best imputation
method. Table. 1 shows the comparison of the average of RMSE and the aver-
age rank for all methods from all stations for both the MICE and SMA datasets,
respectively, using the Cluster Average (CA) is associated with the minimum
average rank (2.25, 2.37), the minimum average of error (10.003, 10.315), and
the minimum standard deviation (3.901, 4.218). This is followed by 2NN and
then CM with 1NN providing the worst results.

An example of the 4 imputed TS for one station (Glasgow Townhead) for
the period of six months (Jan-Jul of 2018) using SMA (top) and MICE (bottom)
datasets is shown in Fig. 5. It shows that all the imputations reproduce the trend
well, though they may generate slightly higher values. Some periods, early in
the year appear to show more deviation and this may be due to temperatures
having an effect. MICE with CA appears to produce the closest results.

Fig. 6 shows a different station, "Glazebury". In this figure, the red TS rep-
resents the real observations at the stations with some missing values in the
middle of the TS. The green TS represents imputed missing observations using
SMA (Top), and MICE (bottom). On the other hand, the blue TS is the result of
imputing the whole pollutant TS using the Cluster Average CA.

It is worth noting that using the Cluster Medoid (CM) to impute the missing
pollutant is not possible in some cases. If the station we are going to impute is
itself the medoid of the cluster, or if the cluster has only one station then we
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Fig. 5: Pollutant imputation methods using SMA dataset (top) and MICE (bottom) at
Glasgow Townhead station.

Fig. 6: Observations and CA imputed TS using SMA (top) and MICE (bottom) at Glaze-
bury station.

have no feasible imputation hence we record how many stations the imputation
was possible for as the last column of Table 1. As we can see from the table, it is
not possible to create a cluster average for the SMA dataset at "Rochester Stoke"
station, because the cluster has only that station. In this case we cannot use the
Cluster Average and the Cluster Medoid in the imputation process.

7 Conclusions and Future Work

We have proposed and compared a number of techniques to impute ozone val-
ues for a station when missing partially or completely. We found that using the
clustering average as obtained by clustering the stations on the pollutant val-
ues over time using SDB and PAM to impute the missing pollutants gave better
results compared to other techniques. This was true regardless of the method
used to impute missing observations (partial imputation). However, the com-
bination of multiple imputation for partial missing values and cluster average
for pollutant imputation gave the best results.

Our future work is to apply this method to all air pollutants that contribute
to the DAQI, then calculate the DAQI from the imputed pollutants and compare
it with the historical reported DAQI based on datasets with missing data. From
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Table 1: The average RMSE and rank comparison for each methods in the two datasets.
Average Average Errors Standard deviation Station

Methods Rank (RMSE) (std) contributing
MICE Dataset

Cluster Average (CA) 2.25 10.003 3.901 65
Cluster Medoid (CM) 2.78 11.410 4.544 58
First neighbor (1NN) 2.86 12.116 5.417 65
Average of 2NN 2.41 10.784 5.272 65

SMA Dataset
Cluster Average (CA) 2.37 10.315 4.218 64
Cluster Medoid (CM) 2.61 11.692 4.404 52
First neighbor (1NN) 3.05 12.641 5.263 65
Average of 2NN 2.53 11.266 5.121 65

that we can identify any deviations between DAQI values calculated with more
information (i.e. the imputed information) and the historical reported DAQI,
and this may highlight stations where more measurements will be beneficial,
for example where inclusion of the measurement of another pollutant at an
AURN station will likely lead to a more accurate DAQI.
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