4 research outputs found

    Age Study of Minnesota Red Fox Using Cementum Annulae Counts and Tooth X-Rays

    Get PDF
    A prerequisite to the proper management of an animal species is understanding of its population dynamics. Attempting this, the age structure of 297 red fox trapped or shot in southern Minnesota was investigated, using the techniques of tooth sectioning and x-ray. Results from two seasons (1977 and 1978) were similar, with 76.8 percent of the harvested population being juveniles (78.4 percent, 1977 and 74.6 percent, 1978), whereas only 0 .6 percent of the total were in the 4½ year old class. The percentage of juveniles corresponds closely to the numbers predicted by a Department of Natural Resources model developed by Al Berner of the Farmland Research Unit. If a population reacts in a density-dependent manner, an increase in the breeding density should reduce the reproductive rate, and vice-versa. Data of this paper tend to support the premise that the reproductive rate in Minnesota red fox is affected in a density-dependent manner

    Energy expenditure during sleep, sleep deprivation and sleep following sleep deprivation in adult humans

    Get PDF
    Sleep has been proposed to be a physiological adaptation to conserve energy, but little research has examined this proposed function of sleep in humans. We quantified effects of sleep, sleep deprivation and recovery sleep on whole-body total daily energy expenditure (EE) and on EE during the habitual day and nighttime. We also determined effects of sleep stage during baseline and recovery sleep on EE. Seven healthy participants aged 22 ± 5 years (mean ± s.d.) maintained ∼8 h per night sleep schedules for 1 week before the study and consumed a weight-maintenance diet for 3 days prior to and during the laboratory protocol. Following a habituation night, subjects lived in a whole-room indirect calorimeter for 3 days. The first 24 h served as baseline – 16 h wakefulness, 8 h scheduled sleep – and this was followed by 40 h sleep deprivation and 8 h scheduled recovery sleep. Findings show that, compared to baseline, 24 h EE was significantly increased by ∼7% during the first 24 h of sleep deprivation and was significantly decreased by ∼5% during recovery, which included hours awake 25–40 and 8 h recovery sleep. During the night time, EE was significantly increased by ∼32% on the sleep deprivation night and significantly decreased by ∼4% during recovery sleep compared to baseline. Small differences in EE were observed among sleep stages, but wakefulness during the sleep episode was associated with increased energy expenditure. These findings provide support for the hypothesis that sleep conserves energy and that sleep deprivation increases total daily EE in humans

    Deposition of nitrogen into the North Sea

    No full text
    The flux of nitrogen species from the atmosphere into the ocean, with emphasis on coastal waters, was addressed during the ANICE project (Atmospheric Nitrogen Inputs into the Coastal Ecosystem). ANICE focused on quantifying the deposition of atmospheric inputs of inorganic nitrogen compounds (HNO3, NO3-, NH3 and NH4+) into the North Sea and the processes governing this deposition. The Southern North Sea was studied as a prototype. Because the physical and chemical processes are described, as opposed to empirical relations, the results can potentially be transferred to other regional seas like the Mediterranean, the North Atlantic continental shelf area and the Baltic. Two intensive field experiments were undertaken, centred around the offshore tower Meetpost Noordwijk and the Weybourne Atmospheric Observatory in East Anglia (UK). Long-term measurements were made on a ferry sailing between Hamburg and Harwich/Newcastle. These measurements provided data for sensitivity studies of a variety of problems associated with the coastal region that are not easily evaluated with larger scale models, to constrain models and to test model results. Concentrations of nitrogen compounds over the North Sea and the resulting deposition presented in this paper were obtained with the Lagrangian transport-chemistry model ACDEP. The average annual deposition in 1999 was 906kg Nkm-2. The results are compared with experimental data from the ferry. Effects of temporal and spatial variations are evaluated based on experimental results and small-scale model studies. In particular, effects of the aerosol size distribution on the nitrogen deposition are discussed
    corecore