542 research outputs found

    Composition, richness and abundance of Coleoptera associated to semideciduous forests and ruderal vegetation in Sierra del Rosario, Cuba

    Get PDF
    En tres bosques semideciduos y en tres tipos de vegetación ruderal del Área Protegida de Recursos Manejados Mil Cumbres (Sierra del Rosario, Pinar del Río, Cuba), se analizan las comunidades de coleópteros y se las compara respecto a la composición, riqueza, abundancia, diversidad, equitatividad, ordenación y complementariedad. La composición de coleópteros conocida hasta el momento es de 166 especies, incluidas en 75 géneros y 34 familias. La vegetación ruderal presentaó mayor riqueza y abundancia que los bosques semideciduos. El bosque y la vegetación ruderal de Pan de Guajaibón exhibieron los valores más altos de riqueza, abundancia y número de especies únicas. Ambas formaciones vegetales de Sierra Chiquita presentaron la mayor diversidad y equitatividad. Las comunidades de coleópteros más afines estaban entre los bosques y entre la vegetaciones ruderales en Forneguera y Pan de Guajaibón. Cada bosque y tipo de vegetación ruderal presentaba especies exclusivas.In three semideciduous forests and in three types of ruderal vegetation within the Mil Cumbres Protected Area of Managed Resources (Sierra del Rosario, Pinar del Río, Cuba), the beetle communities were analyzed and compared for composition, richness, abundance, diversity, equitability, ordination and complementarity. A total of 166 species of 75 genera and 34 families were recorded. Ruderal vegetation showed higher values of richness and abundance than the semideciduous forests. The forest and ruderal vegetation of Pan de Guajaibón showed the highest values of species richness, abundance and number of unique species. Both plant communities of Sierra Chiquita presented the highest diversity and equitability values. The most similar beetle communities were between forests and between ruderal vegetation types at Forneguera and Pan de Guajaibón. Each forest and ruderal vegetation type had exclusive species

    Reversal of gulf stream circulation in a vertically vibrated triangular fluidized bed

    Get PDF
    Vibrated fluidized beds are a process intensification technique consisting in introducing vibratory kinetic energy in a fluidized bed (1). In this work we assess experimentally the effect of vibration on the gulf-stream circulation pattern of particles in a fluidized bed that is of triangular shape. The bed has 0.206 m span and 0.01 m thickness. The base of the bed is composed of two inclined walls, each one forming an angle of 45º with the horizontal. Air was injected through the inclined bed walls to fluidize the bed (see Figure 1a). This gas injection, together with vibration, can make the dynamics of this bed different to that found in a spouted fluidized bed (2). The bed is filled with ballotini particles with a mean diameter of 1.15 mm up to the top of the inclined walls. The bed vessel is made of antistatic PMMA to allow optical access with a high-speed camera. The bed was mounted on an electrodynamic shaker which produces the vibration. A high speed camera is used to record the motion of particles. The particle velocity was obtained via Particle Image Velocimetry (PIV). As a function of vibration amplitude and frequency, we observe several circulation patterns when the fluidization velocity is just below and above the minimum fluidization velocity. Noticeably, for zero gas velocity, particles ascend close to the side walls descend in the center of the bed. By injecting fluidization gas, the circulation pattern of the bed could be reversed (i.e. particles descending near the side walls ascend in the center of the bed) for certain conditions. For example, reversal of the gulf stream circulation of particles appeared in the triangular bed for gas superficial velocities higher than the minimum fluidization velocity and sufficiently high values of the vibration strength. This phenomenon is illustrated in Figure 1b in which, for the same vibrating conditions, the injection of gas superficial velocity through the walls reverses the gulf stream motion of particles in the bed. REFERENCES R. Gupta, A.S. Mujumdar, Hydrodynamic of vibrated fluidized bed, Can. J. Chem. Eng., 58:332-338, 1980. Vinayak S. Sutkar, Niels G. Deen, J.A.M. Kuipers, Spout fluidized beds: Recent advances in experimental and numerical studies, Chem. Eng. Sci., 86:124:136, 2013. Please click Additional Files below to see the full abstract

    Segregation of equal-sized particles of different densities in a vertically vibrated fluidized bed

    Get PDF
    Many operations in the chemical and energy-conversion industries rely on the fluidization of heterogeneous materials. During fluidization, particles of different densities can segregate, even if they are of the same size. Segregation is typically an undesired phenomenon, especially in fluidized bed reactors (1). Thus, an understanding of segregation on a fundamental level is paramount to identify effective measures to control it. One approach to control segregation could be the vibration of the bed vessel. However, there is very little literature available concerning the effect of vibration on density-induced segregation dynamics (2). Thus, this work studies the influence of vibration on density-induced segregation dynamics in a gas fluidized bed. Experiments were carried out in a pseudo-2D bed of 0.2 m width, 0.5 m height and 0.01 m thickness. The bed was filled with black, ballotini spheres (density 2500 kg/m3) mixed with heavier, white, ceramic particles (density 4100 kg/m3 and 6000 kg/m3). All particles have an average diameter of 1.1 mm. The bed was fluidized by air and vibrated by an electrodynamic shaker. High-speed images were recorded through the transparent front wall of the bed. Digital Image Analysis (DIA) was used to characterize the rate and extent of particle mixing with time (see Figure 1). At the start of the experiments the particles were mixed. The results obtained indicate that both the vibration strength and the gas velocity have an important effect on both the rate and the maximum degree of segregation of particles. We observed that particles become segregated for fluidization velocities greater than the minimum fluidization velocity of the denser particles. Adding vertical vibration to this system tended to enhance density-induced segregation. Interestingly, we found that, for sufficiently high vibration strengths, the degree of segregation decreased with vibration. These results indicate that by a judicious choice of the vibration strength and the fluidization velocity density-induced segregation can be controlled. REFERENCES W-C. Yang, Handbook of fluidization and fluid-particle systems, CRC Press, 2003. L. Sun, F. Zhao, Q. Zhang, D. Li, H. Lu, Numerical simulation of particle segregation in vibration fluidized bed, Chem. Eng. Technol., 37(12):2109-2115, 2014. Please click Additional Files below to see the full abstract

    Inoculation of the Leishmania infantum HSP70-II null mutant induces long-term protection against L. amazonensis infection in BALB/c mice

    Get PDF
    Leishmania amazonensis parasites are etiological agents of cutaneous leishmaniasis in the New World. BALB/c mice are highly susceptible to L. amazonensis challenge due to their inability to mount parasite-dependent IFN-γ-mediated responses. Here, we analyzed the capacity of a single administration of the LiΔHSP70-II genetically-modified attenuated L. infantum line in preventing cutaneous leishmaniasis in mice challenged with L. amazonensis virulent parasites. In previous studies, this live attenuated vaccine has demonstrated to induce long-protection against murine leishmaniasis due to Old World Leishmania species. Vaccinated mice showed a reduction in the disease evolution due to L. amazonensis challenge, namely reduction in cutaneous lesions and parasite burdens. In contrast to control animals, after the challenge, protected mice showed anti-Leishmania IgG2a circulating antibodies accompanied to the induction of Leishmania-driven specific IFN-γ systemic response. An analysis performed in the lymph node draining the site of infection revealed an increase of the parasite-specific IFN-ϒ production by CD4+ and CD8+ T cells and a decrease in the secretion of IL-10 against leishmanial antigens. Since the immunity caused by the inoculation of this live vaccine generates protection against different forms of murine leishmaniasis, we postulate LiΔHSP70-II as a candidate for the development of human vaccines.This research was funded by grants from Ministerio de Ciencia e Innovación FISPI11/00095 and FISPI14/00366 (FEDER FUNDING) to M.S. and RYC-2016-19463 and RTI2018-343 to S.I. J.M.R. and M.S. are funded by the Fondo de Investigaciones Sanitarias (ISCIII-RETICRD16/0027/008-FEDER). E.H.G. is supported by a FPI grant from the Spanish Ministerio de Ciencia e Innovación. Institutional grants from the Fundación Ramón Areces and Banco de Santander to the CBMSO are also acknowledged. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewe

    Combination of adsorption and biological treatment in a SBR for colour elimination in municipal wastewater with discharges of textile effluents

    Full text link
    ischarge of textile wastewaters (WW) to municipal wastewater treatment plants (MWWTPs) entails the presence of colour in the final effluent. It causes a negative impact on the environment and, additionally, hinders an efficient disinfection by UV lamps. In this work, a combined process consisting of the addition of powdered activated carbon (PAC) to a sequencing batch reactor was studied. The main objective was to reduce WW colour in order to obtain transmittance values in the final effluent above 60%, measured at a wavelength of 254 nm, with the aim of ensuring disinfection with UV lamps. Experiments were performed with both simulated wastewater (SWW) including the azo dye Reactive Black 5 and WW from a MWWTP receiving discharges from textile mills. Biosorption increased the transmittance of the effluent around 25% for SWW and 24% for WW, in comparison with the values measured in the influent. The PAC concentrations for the achievement of a value of 60% in the transmittance of the treated water were 250 and 400 mg/L for the simulated effluent and for the WW, respectively. PAC had to be periodically added in order to cover its loss in the waste sludge.Authors thank Depuracion de Aguas del Mediterraneo S.A. for its support in the work.Ferrer-Polonio, E.; Iborra Clar, A.; Mendoza Roca, JA.; Iborra Clar, MI. (2014). Combination of adsorption and biological treatment in a SBR for colour elimination in municipal wastewater with discharges of textile effluents. Desalination and Water Treatment. 55(7):1915-1912. doi:10.1080/19443994.2014.929979S1915191255

    Flow and Tableting Behaviors of Some Egyptian Kaolin Powders as Potential Pharmaceutical Excipients

    Get PDF
    The present work aimed at assessing the pharmaceutical tableting properties of some Egyptian kaolin samples belong to the Abu Zenima kaolin deposits (estimated at 120 million tons). Four representative samples were selected based on kaolinite richness and their structural order-disorder degree, and after purification, they were dried at 70 ºC and heated from room temperature up to 400 ºC (10 ºC/min). Mineralogy, micromorphology, microtexture, granulometry, porosimetry, moisture content, bulk and tapped density, direct and indirect flowability, and tableting characteristics are studied. Results indicated that purified kaolin samples were made up of 95–99% kaolinite, <3% illite, 1% quartz and 1% anatase. The powder showed mesoporous character (pore diameters from 2 to 38 nm and total pore volume from 0.064 to 0.136 cm3/g) with dominance of fine nanosized particles (<1 um–10 nm). The powder flow characteristics of both the ordered (Hinckley Index HI > 0.7, crystallite size D001 > 30 nm) and disordered (HI < 0.7, D001 < 30 nm) kaolinite-rich samples have been improved (Hausner ratio between 1.24 and 1.09) as their densities were influenced by thermal treatment (with some observed changes in the kaolinite XRD reflection profiles) and by moisture content (variable between 2.98% and 5.82%). The obtained tablets exhibited hardness between 33 and 44 N only from the dehydrated powders at 400 ºC, with elastic recovery (ER) between 21.74% and 25.61%, ejection stress (ES) between 7.85 and 11.45 MPa and tensile fracture stress (TFS) between 1.85 and 2.32 MPa, which are strongly correlated with crystallinity (HI) and flowability (HR) parameters. These findings on quality indicators showed the promising pharmaceutical tabletability of the studied Egyptian kaolin powders and the optimization factors for their manufacturability and compactability.This work has been funded by the Egyptian Cultural Affairs and Missions Sector (Plan 2013–2014), Ministry of Higher Education, in collaboration with the Group CTS-946 (Junta de Andalucía) and MINECO project CGL2016-80833-R (Spain), and the grant funded by Erasmus+ KA1 mobility program 2016/2017

    Solidly Mounted Resonators with Carbon Nanotube Electrodes for Biosensing Applications

    Get PDF
    The work reported here shows a direct experimental comparison of the sensitivities of AlN solidly mounted resonators (SMR)-based biosensors fabricated with standard metal electrodes and with carbon nanotube electrodes. SMRs resonating at frequencies around 1.75 GHz have been fabricated, some devices using a thin film of multi-wall carbon nanotubes (CNTs) as the top electrode material and some identical devices using a chromium/gold electrode. Protein solutions with different concentrations were loaded on the top of the resonators and their responses to mass-load from physically adsorbed coatings were investigated. Results show that resonators using CNTs as the top electrode material exhibited higher frequency change for a given load due to the higher active surface area of a thin film of interconnecting CNTs compared to that of a metal thin film electrode and hence exhibited greater mass loading sensitivity. It is therefore concluded that the use of CNT electrodes on resonators for their use as gravimetric biosensors is viable and worthwhile

    Photoluminescence Activation of Organic Dyes via Optically Trapped Quantum Dots

    Full text link
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Nano, copyright © American Chemical Society after peer review and technical editing by the publisher.[EN] Laser tweezers afford quantum dot (QD) manipulation for use as localized emitters. Here, we demonstrate fluorescence by radiative energy transfer from optically trapped colloidal QDs (donors) to fluorescent dyes (acceptors). To this end, we synthesized silica-coated QDs of different compositions and triggered their luminescence by simultaneous trapping and two-photon excitation in a microfluidic chamber filled with dyes. This strategy produces a near-field light source with great spatial maneuverability, which can be exploited to scan nanostructures. In this regard, we demonstrate induced photoluminescence of dye-labeled cells via optically trapped silica-coated colloidal QDs placed at their vicinity. Allocating nanoscale donors at controlled distances from a cell is an attractive concept in fluorescence microscopy because it dramatically reduces the number of excited dyes, which improves resolution by preventing interferences from the whole sample, while prolonging dye luminescence lifetime due to the lower power absorbed from the QDs.H.R.-R. is supported by an FPI-UAM 2015 fellowship (BES-2009-027909). Authors acknowledge funding from the Spanish Ministry of Economy and Competitiveness through MAT2017-85617-R and MAT2015-71806-R. B.H.J. acknowledges financial support from the Spanish Ministry of Economy and Competitiveness, through the Maria de Maeztu (IFIMAC) and Severo Ochoa (IMDEA Nanoscience) Programmes for Units of Excellence in R&D.Rodríguez-Rodríguez, H.; Acebrón, M.; Iborra, F.; Arias-Gonzalez, JR.; Juárez, B. (2019). Photoluminescence Activation of Organic Dyes via Optically Trapped Quantum Dots. ACS Nano. 13(6):7223-7230. https://doi.org/10.1021/acsnano.9b02835S7223723013

    AlN-based BAW resonators with CNT electrodes for gravimetric biosensing

    Get PDF
    Solidly mounted resonators (SMRs) with a top carbon nanotubes (CNTs) surface coating that doubles as an electrode and as a sensing layer have been fabricated. The influence of the CNTs on the frequency response of the resonators was studied by direct comparison to identical devices with a top metallic electrode. It was found that the CNTs introduced significantly less mass load on the resonators and these devices exhibited a greater quality factor, Q (>2000, compared to ∼1000 for devices with metal electrodes), which increases the gravimetric sensitivity of the devices by allowing the tracking of smaller frequency shifts. Protein solutions with different concentrations were loaded on the top of the resonators and their responses to mass-load from physically adsorbed coatings were investigated. Results show that resonators using CNTs as the top electrode exhibited a higher frequency change for a given load (∼0.25 MHz cm2 ng−1) compared to that of a metal thin film electrode (∼0.14 MHz cm2 ng−1), due to the lower mass of the CNT electrodes and their higher active surface area compared to that of a thin film metal electrode. It is therefore concluded that the use of CNT electrodes on resonators for their use as gravimetric biosensors is a significant improvement over metallic electrodes that are normally employed
    corecore