434 research outputs found

    Estimating the proportion of offenders supervised by probation trusts in England and Wales who are ex-Armed Forces

    Get PDF
    On 15 September 2010 Defence Analytical Services and Advice (DASA) published its estimate of the proportion of prisoners in England and Wales who are ex-Armed Forces. The study involved matching the personal details of adult prisoners (a snapshot taken on 06/11/09) against DASA’s Service leavers’ database. It was estimated that 3.5% of prisoners were veterans of the UK Regular Armed Forces. A similar matching exercise has now been undertaken to estimate the proportion of those being supervised by Probation Trusts in England and Wales who are ex-Armed Forces

    Estimating the proportion of prisoners in England and Wales who are ex-Armed Forces - further analysis

    Get PDF
    On 25 January 2010 Defence Analytical Services and Advice (DASA) published its initial estimate of the proportion of prisoners in England and Wales who are ex-Armed Forces. The study involved matching the personaldetails of adult prisoners against DASA’s Service leavers database. The initial report published on 25 January 2010 reported that 2,207 records of Service leavers matched against the 81,071 prisoner records supplied by the Ministry of Justice (MoJ) (a snapshot taken on 06/11/09). From this it was estimated that 2.7% (rounded up to 3%) of prisoners were veterans of the UK Regular Armed Forces. The initial report committed the Ministry of Defence to three areas of further analysis. These three components are described in detail in this report which is divided into the following sections:Section A: Revising the estimate of the proportion of prisoners in England and Wales who are ex-Armed Forces.Section B: Describing the characteristics of the prisoners in England and Wales who were identified as ex-Armed Forces.Section C: Comparing the proportion of ex-Armed Forcesidentified as being in prison with the proportion of the general population in prison, overall and by offence group

    Landesque capital as an alternative to food storage in Melanesia: Irrigated taro terraces in New Georgia, Solomon Islands

    Get PDF
    In the Pacific islands, subsistence diversity made possible continuous production of food while welldeveloped exchange networks redistributed these foodstuffs as well as items within the prestige economy. All these were aspects of the ‘storage structures’ that enabled social and nutritional value to be saved, accumulated and later mobilised. In addition, there were investments in the land, landesque capital, which secured future food surpluses and so provided an alternative to food storage, in a region where the staple foods were mostly perishable, yams excepted, and food preservation was difficult. Landesque capital included such long-term improvements to productivity as terraces, mounds, irrigation channels, drainage ditches, soil structural changes and tree planting. These investments provided an effective alternative to food storage and made possible surplus production for exchange purposes. As an example, in the New Georgia group of the western Solomon Islands irrigated terraces, termed ruta, were constructed for growing the root crop taro (Colocasia esculenta). Surplus taro from ruta enabled inland groups to participate in regional exchange networks and so obtain the shell valuables that were produced by coastal groups. In this paper, we reconstruct how this exchange system worked in New Georgia using ethno-archaeological evidence, we chart its prehistoric rise and post-colonial fall, and we outline the factors that constrained its long-term expansion.Our gratitude for support during earlier fieldwork in the New Georgia group has already been expressed in previous publications. The 2014 project was supported by the Smuts Fund and Foreign Travel Fund, University of Cambridge, and by St John’s College, Cambridge.This is the accepted manuscript. The final version is available from Maney at http://dx.doi.org/10.1179/1749631414Y.000000004

    Novel opsin gene variation in large-bodied, diurnal lemurs

    Full text link
    Some primate populations include both trichromatic and dichromatic (red-green colour blind) individuals due to allelic variation at the X-linked opsin locus. This polymorphic trichromacy is well described in day-active New World monkeys. Less is known about colour vision in Malagasy lemurs, but, unlike New World monkeys, only some day-active lemurs are polymorphic, while others are dichromatic. The evolutionary pressures underlying these differences in lemurs are unknown, but aspects of species ecology, including variation in activity pattern, are hypothesized to play a role. Limited data on X-linked opsin variation in lemurs make such hypotheses difficult to evaluate. We provide the first detailed examination of X-linked opsin variation across a lemur clade (Indriidae). We sequenced the X-linked opsin in the most strictly diurnal and largest extant lemur, Indri indri, and nine species of smaller, generally diurnal indriids (Propithecus). Although nocturnal Avahi (sister taxon to Propithecus) lacks a polymorphism, at least eight species of diurnal indriids have two or more X-linked opsin alleles. Four rainforest-living taxa-I. indri and the three largest Propithecus species-have alleles not previously documented in lemurs. Moreover, we identified at least three opsin alleles in Indri with peak spectral sensitivities similar to some New World monkeys

    The 5â€Č Leader of the mRNA Encoding the Mouse Neurotrophin Receptor TrkB Contains Two Internal Ribosomal Entry Sites that Are Differentially Regulated

    Get PDF
    A single internal ribosomal entry site (IRES) in conjunction with IRES transactivating factors (ITAFs) is sufficient to recruit the translational machinery to a eukaryotic mRNA independent of the cap structure. However, we demonstrate that the mouse TrkB mRNA contains two independent IRESes. The mouse TrkB mRNA consists of one of two 5â€Č leaders (1428 nt and 448 nt), both of which include the common 3â€Č exon (Ex2, 344 nt). Dicistronic RNA transfections and in vitro translation of monocistronic RNA demonstrated that both full-length 5â€Č leaders, as well as Ex2, exhibit IRES activity indicating the IRES is located within Ex2. Additional analysis of the upstream sequences demonstrated that the first 260 nt of exon 1 (Ex1a) also contains an IRES. Dicistronic RNA transfections into SH-SY5Y cells showed the Ex1a IRES is constitutively active. However, the Ex2 IRES is only active in response to retinoic acid induced neural differentiation, a state which correlates with the synthesis of the ITAF polypyrimidine tract binding protein (PTB1). Correspondingly, addition or knock-down of PTB1 altered Ex2, but not Ex1a IRES activity in vitro and ex vivo, respectively. These results demonstrate that the two functionally independent IRESes within the mouse TrkB 5â€Č leader are differentially regulated, in part by PTB1

    Exploiting structural and topological information to improve prediction of RNA-protein binding sites

    Get PDF
    The breast and ovarian cancer susceptibility gene BRCA1 encodes a multifunctional tumor suppressor protein BRCA1, which is involved in regulating cellular processes such as cell cycle, transcription, DNA repair, DNA damage response and chromatin remodeling. BRCA1 protein, located primarily in cell nuclei, interacts with multiple proteins and various DNA targets. It has been demonstrated that BRCA1 protein binds to damaged DNA and plays a role in the transcriptional regulation of downstream target genes. As a key protein in the repair of DNA double-strand breaks, the BRCA1-DNA binding properties, however, have not been reported in detail

    Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

    Get PDF
    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death

    CMASA: an accurate algorithm for detecting local protein structural similarity and its application to enzyme catalytic site annotation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The rapid development of structural genomics has resulted in many "unknown function" proteins being deposited in Protein Data Bank (PDB), thus, the functional prediction of these proteins has become a challenge for structural bioinformatics. Several sequence-based and structure-based methods have been developed to predict protein function, but these methods need to be improved further, such as, enhancing the accuracy, sensitivity, and the computational speed. Here, an accurate algorithm, the CMASA (Contact MAtrix based local Structural Alignment algorithm), has been developed to predict unknown functions of proteins based on the local protein structural similarity. This algorithm has been evaluated by building a test set including 164 enzyme families, and also been compared to other methods.</p> <p>Results</p> <p>The evaluation of CMASA shows that the CMASA is highly accurate (0.96), sensitive (0.86), and fast enough to be used in the large-scale functional annotation. Comparing to both sequence-based and global structure-based methods, not only the CMASA can find remote homologous proteins, but also can find the active site convergence. Comparing to other local structure comparison-based methods, the CMASA can obtain the better performance than both FFF (a method using geometry to predict protein function) and SPASM (a local structure alignment method); and the CMASA is more sensitive than PINTS and is more accurate than JESS (both are local structure alignment methods). The CMASA was applied to annotate the enzyme catalytic sites of the non-redundant PDB, and at least 166 putative catalytic sites have been suggested, these sites can not be observed by the Catalytic Site Atlas (CSA).</p> <p>Conclusions</p> <p>The CMASA is an accurate algorithm for detecting local protein structural similarity, and it holds several advantages in predicting enzyme active sites. The CMASA can be used in large-scale enzyme active site annotation. The CMASA can be available by the mail-based server (<url>http://159.226.149.45/other1/CMASA/CMASA.htm</url>).</p

    Trabectedin plus pegylated liposomal doxorubicin in relapsed ovarian cancer delays third-line chemotherapy and prolongs the platinum-free interval

    Get PDF
    Background: OVA-301 is a large randomized trial that showed superiority of trabectedin plus pegylated liposomal doxorubicin (PLD; CentoCor Ortho Biotech Products L.P., Raritan, NJ, USA). over single-agent PLD in 672 patients with relapsed ovarian cancer, particularly in the partially platinum-sensitive subgroup [platinum-free interval (PFI) of 6–12 months]. This superiority has been suggested to be due to the differential impact of subsequent (platinum) therapy
    • 

    corecore