102 research outputs found

    Optical and microphysical characterization of aerosol layers over South Africa by means of multi-wavelength depolarization and Raman lidar measurements

    Get PDF
    © 2016 The Author(s). Published by Copernicus Publications on behalf of the European Geosciences Union. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence ( https://creativecommons.org/licenses/by/3.0/ ), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.Optical and microphysical properties of different aerosol types over South Africa measured with a multi-wavelength polarization Raman lidar are presented. This study could assist in bridging existing gaps relating to aerosol properties over South Africa, since limited long-term data of this type is available for this region. The observations were performed under the framework of the EUCAARI campaign in Elandsfontein. The multi-wavelength PollyXT Raman lidar system was used to determine vertical profiles of the aerosol optical properties, i.e. extinction and backscatter coefficients, Ångström exponents, lidar ratio and depolarization ratio. The mean microphysical aerosol properties, i.e. effective radius and single scattering albedo were retrieved with an advanced inversion algorithm. Clear differences were observed for the intensive optical properties of atmospheric layers of biomass burning and urban/industrial aerosols. Our results reveal a wide range of optical and microphysical parameters for biomass burning aerosols. This indicates probable mixing of biomass burning aerosols with desert dust particles, as well as the possible continuous influence of urban/industrial aerosol load in the region. The lidar ratio at 355 nm, the lidar ratio at 532 nm, the linear particle depolarization ratio at 355 nm and the extinction-related Ångström exponent from 355 to 532 nm were 52 ± 7 sr; 41 ± 13 sr; 0.9 ± 0.4 % and 2.3 ± 0.5, respectively for urban / industrial aerosols, while these values were 92 ± 10 sr; 75 ± 14; 3.2 ± 1.3 % and 1.7 ± 0.3 respectively for biomass burning aerosols layers. Biomass burning particles are larger and slightly less absorbing compared to urban / industrial aerosols. The particle effective radius were found to be 0.10 ± 0.03 μm, 0.17 ± 0.04 μm and 0.13 ± 0.03 μm for urban/industrial, biomass burning, and mixed aerosols, respectively, while the single scattering albedo at 532 nm were 0.87 ± 0.06, 0.90 ± 0.06, and 0.88 ± 0.07 (at 532 nm), respectively for these three types of aerosols. Our results were within the same range of previously reported values.Peer reviewedFinal Published versio

    Optical properties of different aerosol types: seven years of combined Raman-elastic backscatter lidar measurements in Thessaloniki, Greece

    Get PDF
    We present our combined Raman/elastic backscatter lidar observations which were carried out at the EARLINET station of Thessaloniki, Greece, during the period 2001–2007. The largest optical depths are observed for Saharan dust and smoke aerosol particles. For local and continental polluted aerosols the measurements indicate high aerosol loads. However, measurements associated with the local path indicate enhanced aerosol load within the Planetary Boundary Layer. The lowest value of aerosol optical depth is observed for continental aerosols, from West directions with less free tropospheric contribution. The largest lidar ratios, of the order of 70 sr, are found for biomass burning aerosols. A significant and distinct correlation between lidar ratio and backscatter related Ångström exponent values were estimated for different aerosol categories. Scatter plot between lidar ratio values and Ångström exponent values for local and continental polluted aerosols does not show a significant correlation, with a large variation in both parameters possibly due to variable absorption characteristics of these aerosols. Finally for continental aerosols with west and northwest directions that follow downward movement when arriving at our site constantly low lidar ratios almost independent of size are found

    Optical and geometrical characteristics of cirrus clouds over a Southern European lidar station

    Get PDF
    Optical and geometrical characteristics of cirrus clouds over Thessaloniki, Greece (40.6° N, 22.9° E) have been determined from the analysis of lidar and radiosonde measurements performed during the period from 2000 to 2006. Cirrus clouds are generally observed in a mid-altitude region ranging from 8.6 to 13 km, with mid-cloud temperatures in the range from −65° to −38°C. The cloud thickness generally ranges from 1 to 5 km and 38{%} of the cases studied have thickness between 2 and 3 km. The retrieval of optical depth and lidar ratio of cirrus clouds is performed using three different methods, taking into account multiple scattering effect. The mean optical depth is found to be 0.31±0.24 and the corresponding mean lidar ratio is 30±17 sr following the scheme of Klett-Fernald method. Sub-visual, thin and opaque cirrus clouds are observed at 3%, 57% and 40% of the measured cases, respectively. A comparison of the results obtained between the three methods shows good agreement. The multiple scattering errors of the measured effective extinction coefficients range from 20 to 60%, depending on cloud optical depth. The temperature and thickness dependencies on optical properties have also been studied in detail. A maximum mid-cloud depth of ~3.5 km is found at temperatures around ~−47.5°C, while there is an indication that optical depth and mean extinction coefficient increases with increasing mid-cloud temperature. A correlation between optical depth and thickness was also found. However, no clear dependence of the lidar ratio values on the cloud temperature and thickness was found

    Optical and geometrical characteristics of cirrus clouds over a mid-latitude lidar station

    No full text
    International audienceOptical and geometrical characteristics of cirrus clouds over Thessaloniki, Greece (40.6°, 22.9°) have been determined from the analysis of lidar and radiosonde measurements performed during the period from 2000 to 2006. Cirrus clouds are generally observed in a mid altitude region ranging from 7 to 12 km, with mid-cloud temperatures in the range from ?65° to ?25°C. A seasonality of cirrus geometrical and temperature properties is found. The cloud thickness ranges from 0.85 to 5 km and 37% of our cases have thickness between 2 and 3 km. The retrieval of cloud's optical depth and lidar ratio is performed using three different methods, taking into account multiple scattering effects. The mean optical depth is found to be 0.3±0.24 and the corresponding mean lidar ratio is 28±17 sr. Sub-visual, thin and opaque cirrus clouds are observed at 7.5%, 51% and 42.5% of the measured cases respectively. The multiple scattering errors of the measured effective extinction coefficients range from 20% to 60% depending on cloud optical depth. A comparison of the results between the three methods shows good agreement. In addition we present the advantages and limitations of each method applied. The temperature and thickness dependencies on optical properties have also been studied in detail. A maximum mid-cloud depth of ~3 km is found at temperatures around ~?45°C while there is an indication that optical depth increases with increasing thickness and mid-cloud temperature. No clear dependence of the lidar ratio values on the cloud temperature and thickness was found

    Investigating the quality of modeled aerosol profiles based on combined lidar and sunphotometer data

    Get PDF
    In this study we present an evaluation of the Comprehensive Air Quality Model with extensions (CAMx) for Thessaloniki using radiometric and lidar data. The aerosol mass concentration profiles of CAMx are compared against the PM2.5 and PM2. 5−10 concentration profiles retrieved by the Lidar-Radiometer Inversion Code (LIRIC). The CAMx model and the LIRIC algorithm results were compared in terms of mean mass concentration profiles, center of mass and integrated mass concentration in the boundary layer and the free troposphere. The mean mass concentration comparison resulted in profiles within the same order of magnitude and similar vertical structure for the PM2. 5 particles. The mean centers of mass values are also close, with a mean bias of 0.57 km. On the opposite side, there are larger differences for the PM2. 5−10 mode, both in the boundary layer and in the free troposphere. In order to grasp the reasons behind the discrepancies, we investigate the effect of aerosol sources that are not properly included in the model's emission inventory and in the boundary conditions such as the wildfires and the desert dust component. The identification of the cases that are affected by wildfires is performed using wind backward trajectories from the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model in conjunction with satellite fire pixel data from MODerate-resolution Imaging Spectroradiometer (MODIS) Terra and Aqua global monthly fire location product MCD14ML. By removing those cases the correlation coefficient improves from 0.69 to 0.87 for the PM2. 5 integrated mass in the boundary layer and from 0.72 to 0.89 in the free troposphere. The PM2.5 center of mass fractional bias also decreases to 0.38 km. Concerning the analysis of the desert dust component, the simulations from the Dust Regional Atmospheric Model (BSC-DREAM8b) were deployed. When only the Saharan dust cases are taken into account, BSC-DREAM8b generally outperforms CAMx when compared with LIRIC, achieving a correlation of 0.91 and a mean bias of −29.1 % for the integrated mass in the free troposphere and a correlation of 0.57 for the center of mass. CAMx, on the other hand, underestimates the integrated mass in the free troposphere. Consequently, the accuracy of CAMx is limited concerning the transported Saharan dust cases. We conclude that the performance of CAMx appears to be best for the PM2.5 particles, both in the boundary layer and in the free troposphere. Sources of particles not properly taken into account by the model are confirmed to negatively affect its performance, especially for the PM2. 5−10 particles.The authors would like to acknowledge the EU projects MACC-III (Monitoring Atmospheric Composition and Climate – III, grant agreement no. 633080) and MACC-II project (Monitoring Atmospheric Composition and Climate – Interim Implementation, grant agreement no. 283576). The simulated results presented in this research paper have been produced using the EGI and HellasGrid infrastructures. The ACTRIS-2 project from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 654109 is gratefully acknowledged. The authors would also like to acknowledge the support provided by the Scientific Computing Center at Aristotle University of Thessaloniki throughout the progress of the work on air quality forecasting. BSC-DREAM8b simulations were performed on the Mare Nostrum supercomputer hosted by Barcelona Supercomputing Center-Centro Nacional de Supercomputacion (BSC-CNS). S. Basart wants to acknowledge the CICYT project (CGL2013-46736). Elina Giannakaki acknowledges the support of the Academy of Finland (project no. 270108).Peer ReviewedPostprint (published version

    Profiling water vapor mixing ratios in Finland by means of a Raman lidar, a satellite and a model

    Get PDF
    We present tropospheric water vapor profiles measured with a Raman lidar during three field campaigns held in Finland. Co-located radio soundings are available throughout the period for the calibration of the lidar signals. We investigate the possibility of calibrating the lidar water vapor profiles in the absence of co-existing on-site soundings using water vapor profiles from the combined Advanced InfraRed Sounder (AIRS) and the Advanced Microwave Sounding Unit (AMSU) satellite product; the Aire Limitee Adaptation dynamique Developpement INternational and High Resolution Limited Area Model (ALADIN/HIRLAM) numerical weather prediction (NWP) system, and the nearest radio sounding station located 100 km away from the lidar site (only for the permanent location of the lidar). The uncertainties of the calibration factor derived from the soundings, the satellite and the model data are <2.8, 7.4 and 3.9 %, respectively. We also include water vapor mixing ratio intercomparisons between the radio soundings and the various instruments/model for the period of the campaigns. A good agreement is observed for all comparisons with relative errors that do not exceed 50% up to 8 km altitude in most cases. A 4-year seasonal analysis of vertical water vapor is also presented for the Kuopio site in Finland. During winter months, the air in Kuopio is dry (1.15 +/- 0.40 g kg(-1)); during summer it is wet (5.54 +/- 1.02 g kg(-1)); and at other times, the air is in an intermediate state. These are averaged values over the lowest 2 km in the atmosphere. Above that height a quick decrease in water vapor mixing ratios is observed, except during summer months where favorable atmospheric conditions enable higher mixing ratio values at higher altitudes. Lastly, the seasonal change in disagreement between the lidar and the model has been studied. The analysis showed that, on average, the model underestimates water vapor mixing ratios at high altitudes during spring and summer.Peer reviewe

    Validation of CALIPSO space-borne-derived attenuated backscatter coefficient profiles using a ground-based lidar in Athens, Greece

    Get PDF
    We present initial aerosol validation results of the space-borne lidar CALIOP -onboard the CALIPSO satellite- Level 1 attenuated backscatter coefficient profiles, using coincident observations performed with a ground-based lidar in Athens, Greece (37.9&amp;deg; N, 23.6&amp;deg; E). A multi-wavelength ground-based backscatter/Raman lidar system is operating since 2000 at the National Technical University of Athens (NTUA) in the framework of the European Aerosol Research LIdar NETwork (EARLINET), the first lidar network for tropospheric aerosol studies on a continental scale. Since July 2006, a total of 40 coincidental aerosol ground-based lidar measurements were performed over Athens during CALIPSO overpasses. The ground-based measurements were performed each time CALIPSO overpasses the station location within a maximum distance of 100 km. The duration of the ground–based lidar measurements was approximately two hours, centred on the satellite overpass time. From the analysis of the ground-based/satellite correlative lidar measurements, a mean bias of the order of 22% for daytime measurements and of 8% for nighttime measurements with respect to the CALIPSO profiles was found for altitudes between 3 and 10 km. The mean bias becomes much larger for altitudes lower that 3 km (of the order of 60%) which is attributed to the increase of aerosol horizontal inhomogeneity within the Planetary Boundary Layer, resulting to the observation of possibly different air masses by the two instruments. In cases of aerosol layers underlying Cirrus clouds, comparison results for aerosol tropospheric profiles become worse. This is attributed to the significant multiple scattering effects in Cirrus clouds experienced by CALIPSO which result in an attenuation which is less than that measured by the ground-based lidar

    Planetary boundary layer height by means of lidar and numerical simulations over New Delhi, India

    Get PDF
    In this work, the height of the planetary boundary layer (PBLH) is investigated over Gwal Pahari (Gual Pahari), New Delhi, for almost a year. To this end, ground-based measurements from a multiwavelength Raman lidar were used. The modified wavelet covariance transform (WCT) method was utilized for PBLH retrievals. Results were compared to data from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and the Weather Research and Forecasting (WRF) model. In order to examine the difficulties of PBLH detection from lidar, we analyzed three cases of PBLH diurnal evolution under different meteorological and aerosol load conditions. In the presence of multiple aerosol layers, the employed algorithm exhibited high efficiency (r=0.9) in the attribution of PBLH, whereas weak aerosol gradients induced high variability in the PBLH. A sensitivity analysis corroborated the stability of the utilized methodology. The comparison with CALIPSO observations yielded satisfying results (r=0.8), with CALIPSO slightly overestimating the PBLH. Due to the relatively warmer and drier winter and, correspondingly, colder and rainier pre-monsoon season, the seasonal PBLH cycle during the measurement period was slightly weaker than the cycle expected from long-term climate records.</p
    corecore