research

Optical and geometrical characteristics of cirrus clouds over a mid-latitude lidar station

Abstract

International audienceOptical and geometrical characteristics of cirrus clouds over Thessaloniki, Greece (40.6°, 22.9°) have been determined from the analysis of lidar and radiosonde measurements performed during the period from 2000 to 2006. Cirrus clouds are generally observed in a mid altitude region ranging from 7 to 12 km, with mid-cloud temperatures in the range from ?65° to ?25°C. A seasonality of cirrus geometrical and temperature properties is found. The cloud thickness ranges from 0.85 to 5 km and 37% of our cases have thickness between 2 and 3 km. The retrieval of cloud's optical depth and lidar ratio is performed using three different methods, taking into account multiple scattering effects. The mean optical depth is found to be 0.3±0.24 and the corresponding mean lidar ratio is 28±17 sr. Sub-visual, thin and opaque cirrus clouds are observed at 7.5%, 51% and 42.5% of the measured cases respectively. The multiple scattering errors of the measured effective extinction coefficients range from 20% to 60% depending on cloud optical depth. A comparison of the results between the three methods shows good agreement. In addition we present the advantages and limitations of each method applied. The temperature and thickness dependencies on optical properties have also been studied in detail. A maximum mid-cloud depth of ~3 km is found at temperatures around ~?45°C while there is an indication that optical depth increases with increasing thickness and mid-cloud temperature. No clear dependence of the lidar ratio values on the cloud temperature and thickness was found

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 12/11/2016