317 research outputs found

    Chiral restoration from pionic atoms?

    Get PDF
    We evaluate widths and shifts of pionic atoms using a theoretical microscopical potential in which the pion decay constant fπf_\pi is changed by an in--medium density dependent one (fπ(ρ)f_\pi(\rho)), predicted by different partial Chiral restoration calculations. We show that the results obtained for shifts and widths are worse than if this modification were not implemented. On the other hand, we argue that in microscopic many body approaches for the pion selfenergy, based on effective Lagrangians, the mechanisms responsible for the change of fπf_\pi in the medium should be automatically incorporated. Therefore, the replacement of fπf_\pi by fπ(ρ)f_\pi(\rho) in the many body derivation of the microscopic potential would be inappropriate.Comment: 10 pages, new comments and references adde

    Quantitative determination of modal content and morphological properties of coal sulphides by digital image analysis as a tool to check their flotation behaviour

    Full text link
    An efficient depression of coal sulphides in the flotation process means a healthier environment and may be essential for the sustainability of a coal operation. Nitric and ferric oxidative pre-treatment of coal pyrite have been tested to improve pyrite depression, and the results are compared with those from the process of raw, not pre-treated coal. The removal indexes point to nitric pre-treatment as the best, but depression is still low. The microscopic study of feed and products, coupled to Digital Image Analysis (DIA) in all the cases, provide important clues to understand the behaviour of pyrite, which can be related to quantitative parameters, such as the exposition ratio (ER), and to qualified interpretation of the textures. Pyrite shows in the first float an unexpected hydrophobic behaviour, which is due to its occurrence as framboids, or porous particles which may be intergrown with organic matter and behave as coal. In general, the flotation results can be predicted from the DIA-data, e.g. depression of liberated pyrite into the tailings, increased by oxidative pre-treatments by 300% (ferric) or by > 400% (nitric); or concentration of middlings with lower pyrite ER in the floats. DIA is an efficient tool to obtain some important quantitative informations which otherwise would be inaccessible (e.g. the morphological data on > 1,000,000 pyrite particles for this study), and its use should be enhanced to check ore processing

    Testing Chiral Dynamics in Pionic Atoms

    Get PDF
    The energy dependence of chirally expanded pi N isoscalar and isovector amplitudes b_0(E) and b_1(E) respectively, for zero-momentum off shell pions near threshold, is used to impose the minimal substitution requirement E -> E - V_c on the properly constructed pion optical potential within a large-scale fit to 100 pionic-atom data across the periodic table which also include the recently established `deeply bound' pionic atoms of Pb and Sn. This fit cannot be reconciled with the well known free-space values of the pi N threshold amplitudes. In contrast, introducing the empirically known energy dependence for on-shell pions leads to a better fit and to satisfactory values for the pi N threshold amplitudes. The difference between these two approaches is briefly discussed.Comment: 10 pages, 3 figures, submitted to PLB. Discussion section rewritten, omitting an erroneous equation. Results and conclusions unchanged Accepted by PL

    Multisymplectic Geometry and Multisymplectic Preissman Scheme for the KP Equation

    Full text link
    The multisymplectic structure of the KP equation is obtained directly from the variational principal. Using the covariant De Donder-Weyl Hamilton function theories, we reformulate the KP equation to the multisymplectic form which proposed by Bridges. From the multisymplectic equation, we can derive a multisymplectic numerical scheme of the KP equation which can be simplified to multisymplectic forty-five points scheme.Comment: 17 papges, 8 figure

    Luminescence study of thermal treated and laser irradiated Bi_12GeO_20 and Bi_12SiO_20 crystals

    Get PDF
    Changes on the defect structure of Bi12GeO20 (BGO) and Bi12SiO20 (BSO) crystals induced by thermal treatments and laser irradiation have been studied by means of cathodoluminescence in the scanning electron microscope. The results have been compared to those previously reported for untreated and electron irradiated samples and recombination mechanisms responsible for some of the observed luminescence bands are discussed. Annealing of EGO samples causes the appearance of a new luminescence band at about 390 nm. The centers responsible for this band decorate the deformation slip bands in quenched EGO as observed in the cathodoluminescence images. The emission observed in BSO in the same spectral range is quenched during the annealing treatment. The annealing induced reduction of Bi ions to metallic Bi appears to be related to the quenching of a band at 640 nm observed in untreated samples

    Sensitivity plots for WIMP direct detection using the annual modulation signature

    Get PDF
    Annual modulation due to the Earth's motion around the Sun is a well known signature of the expected WIMP signal induced in a solid state underground detector. In the present letter we discuss the prospects of this technique on statistical grounds, introducing annual-modulation sensitivity plots for the WIMP-nucleon scalar cross section for different materials and experimental conditions. The highest sensitivity to modulation is found in the WIMP mass interval 10 GeV< m_W < 130 GeV, the actual upper limit depending from the choice of the astrophysical parameters, while the lowest values of the explorable WIMP-nucleon elastic cross-sections fall in most cases within one order of magnitude of the sensitivities of present direct detection WIMP searches.Comment: 24 pages, ReVTeX, 9 figures, submitted to Astroparticle Physic

    The Polyakov loop and the heat kernel expansion at finite temperature

    Get PDF
    The lower order terms of the heat kernel expansion at coincident points are computed in the context of finite temperature quantum field theory for flat space-time and in the presence of general gauge and scalar fields which may be non Abelian and non stationary. The computation is carried out in the imaginary time formalism and the result is fully consistent with invariance under topologically large and small gauge transformations. The Polyakov loop is shown to play a fundamental role.Comment: 4 pages, REVTEX, no figure

    Electronic Properties of Ultra-Thin Aluminum Nanowires

    Full text link
    We have carried out first principles electronic structure and total energy calculations for a series of ultrathin aluminum nanowires, based on structures obtained by relaxing the model wires of Gulseren et al. The number of conducting channels is followed as the wires radius is increased. The results suggest that pentagonal wires should be detectable, as the only ones who can yield a channel number between 8 and 10.Comment: 9 pages + 3 figures, to appear on Surface Scienc

    Growth and optical characterization of indirect-gap AlxGa1−xAs alloys

    Get PDF
    Nonintentionally doped AlxGa1−xAs layers with 0.38 x 0.84 were grown on (100) GaAs substrates by liquid phase epitaxy (LPE) under near-equilibrium conditions. The crystalline quality of the samples was studied by photoluminescence at 2 K and room temperature Raman spectroscopy. The peculiar behavior in the photoluminescence intensities of the indirect bound exciton line and the donor–acceptor pair transition is explained from the evolution of the silicon donor binding energy according to the aluminum composition. It was also possible to observe the excitonic transition corresponding to the AlxGa1−xAs/GaAs interface, despite the disorder and other factors which are normally involved when growing high-aluminum-content layers by this technique. Furthermore, Raman measurements show the quadratic variations of longitudinal optical phonon frequencies with aluminum concentration in good agreement with previous experimental results. In this work we show that high quality indirect-gap AlxGa1−xAs samples can be grown by LPE under near-equilibrium [email protected]

    Characterization of surface layers in Zn-diffused LiNbO3 waveguides by heavy ion elastic recoil detection

    Full text link
    Copyright (2002) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Applied Physics Letters 81.11 (2002): 1981-1983 and may be found at http://apl.aip.org
    corecore