958 research outputs found

    Long-time properties of MHD turbulence and the role of symmetries

    Full text link
    We investigate long-time properties of three-dimensional MHD turbulence in the absence of forcing and examine in particular the role played by the quadratic invariants of the system and by the symmetries of the initial configurations. We observe that, when sufficient accuracy is used, initial conditions with a high degree of symmetries, as in the absence of helicity, do not travel through parameter space over time whereas by perturbing these solutions either explicitly or implicitly using for example single precision for long times, the flows depart from their original behavior and can become either strongly helical, or have a strong alignment between the velocity and the magnetic field. When the symmetries are broken, the flows evolve towards different end states, as predicted by statistical arguments for non-dissipative systems with the addition of an energy minimization principle, as already analyzed in \cite{stribling_90} for random initial conditions using a moderate number of Fourier modes. Furthermore, the alignment properties of these flows, between velocity, vorticity, magnetic potential, induction and current, correspond to the dominance of two main regimes, one helically dominated and one in quasi-equipartition of kinetic and magnetic energy. We also contrast the scaling of the ratio of magnetic energy to kinetic energy as a function of wavenumber to the ratio of eddy turn-over time to Alfv\'en time as a function of wavenumber. We find that the former ratio is constant with an approximate equipartition for scales smaller than the largest scale of the flow whereas the ratio of time scales increases with increasing wavenumber.Comment: 14 pages, 6 figure

    Biased gene conversion and GC-content evolution in the coding sequences of reptiles and vertebrates.

    Get PDF
    Mammalian and avian genomes are characterized by a substantial spatial heterogeneity of GC-content, which is often interpreted as reflecting the effect of local GC-biased gene conversion (gBGC), a meiotic repair bias that favors G and C over A and T alleles in high-recombining genomic regions. Surprisingly, the first fully sequenced nonavian sauropsid (i.e., reptile), the green anole Anolis carolinensis, revealed a highly homogeneous genomic GC-content landscape, suggesting the possibility that gBGC might not be at work in this lineage. Here, we analyze GC-content evolution at third-codon positions (GC3) in 44 vertebrates species, including eight newly sequenced transcriptomes, with a specific focus on nonavian sauropsids. We report that reptiles, including the green anole, have a genome-wide distribution of GC3 similar to that of mammals and birds, and we infer a strong GC3-heterogeneity to be already present in the tetrapod ancestor. We further show that the dynamic of coding sequence GC-content is largely governed by karyotypic features in vertebrates, notably in the green anole, in agreement with the gBGC hypothesis. The discrepancy between third-codon positions and noncoding DNA regarding GC-content dynamics in the green anole could not be explained by the activity of transposable elements or selection on codon usage. This analysis highlights the unique value of third-codon positions as an insertion/deletion-free marker of nucleotide substitution biases that ultimately affect the evolution of proteins

    Biased gene conversion and GC-content evolution in the coding sequences of reptiles and vertebrates.

    Get PDF
    Mammalian and avian genomes are characterized by a substantial spatial heterogeneity of GC-content, which is often interpreted as reflecting the effect of local GC-biased gene conversion (gBGC), a meiotic repair bias that favors G and C over A and T alleles in high-recombining genomic regions. Surprisingly, the first fully sequenced nonavian sauropsid (i.e., reptile), the green anole Anolis carolinensis, revealed a highly homogeneous genomic GC-content landscape, suggesting the possibility that gBGC might not be at work in this lineage. Here, we analyze GC-content evolution at third-codon positions (GC3) in 44 vertebrates species, including eight newly sequenced transcriptomes, with a specific focus on nonavian sauropsids. We report that reptiles, including the green anole, have a genome-wide distribution of GC3 similar to that of mammals and birds, and we infer a strong GC3-heterogeneity to be already present in the tetrapod ancestor. We further show that the dynamic of coding sequence GC-content is largely governed by karyotypic features in vertebrates, notably in the green anole, in agreement with the gBGC hypothesis. The discrepancy between third-codon positions and noncoding DNA regarding GC-content dynamics in the green anole could not be explained by the activity of transposable elements or selection on codon usage. This analysis highlights the unique value of third-codon positions as an insertion/deletion-free marker of nucleotide substitution biases that ultimately affect the evolution of proteins

    Pulse contrast enhancement via non-collinear sum-frequency generation with the signal and idler of an optical parametric amplifier

    Get PDF
    We outline an approach for improving the temporal contrast of a high-intensity laser system by >>8 orders of magnitude using non-collinear sum-frequency generation with the signal and idler of an optical parametric amplifier. We demonstrate the effectiveness of this technique by cleaning pulses from a millijoule-level chirped-pulse amplification system to provide >>1012^{12} intensity contrast relative to all pre-pulses and amplified spontaneous emission >>5~ps prior to the main pulse. The output maintains percent-level energy stability on the time scales of a typical user experiment at our facility, highlighting the method's reliability and operational efficiency. After temporal cleansing, the pulses are stretched in time before seeding two multi-pass, Ti:sapphire-based amplifiers. After re-compression, the 1~J, 40~fs (25~TW) laser pulses maintain a >>1010^{10} intensity contrast >>30~ps prior to the main pulse. This technique is both energy-scalable and appropriate for preparing seed pulses for a TW- or PW-level chirped-pulse amplification laser system

    Intermittent turbulent dynamo at very low and high magnetic Prandtl numbers

    Full text link
    Context: Direct numerical simulations have shown that the dynamo is efficient even at low Prandtl numbers, i.e., the critical magnetic Reynolds number Rm_c necessary for the dynamo to be efficient becomes smaller than the hydrodynamic Reynolds number Re when Re -> infinity. Aims: We test the conjecture (Iskakov et al. 2007) that Rm_c actually tends to a finite value when Re -> infinity, and we study the behavior of the dynamo growth factor \gamma\ at very low and high magnetic Prandtl numbers. Methods: We use local and nonlocal shell-models of magnetohydrodynamic (MHD) turbulence with parameters covering a much wider range of Reynolds numbers than direct numerical simulations, but of astrophysical relevance. Results: We confirm that Rm_c tends to a finite value when Re -> infinity. The limit for Rm -> infinity of the dynamo growth factor \gamma\ in the kinematic regime behaves like Re^\beta, and, similarly, the limit for Re -> infinity of \gamma\ behaves like Rm^{\beta'}, with \beta=\beta'=0.4. Conclusion: Comparison with a phenomenology based on an intermittent small-scale turbulent dynamo, together with the differences between the growth rates in the different local and nonlocal models, indicate a weak contribution of nonlocal terms to the dynamo effect.Comment: 5 pages, 6 figure

    Influence of the definition of dissipative events on their statistics

    Full text link
    A convenient and widely used way to study the turbulent plasma in the solar corona is to do statistics of properties of events (or structures), associated with flares, that can be found in observations or in numerical simulations. Numerous papers have followed such a methodology, using different definitions of an event, but the reasons behind the choice of a particular definition (and not another one) is very rarely discussed. We give here a comprehensive set of possible event definitions starting from a one-dimensional data set such as a time-series of energy dissipation. Each definition is then applied to a time-series of energy dissipation issued from simulations of a shell-model of magnetohydrodynamic turbulence as defined in Giuliani and Carbone (1998), or from a new model of coupled shell-models designed to represent a magnetic loop in the solar corona. We obtain distributions of the peak dissipation power, total energy, duration and waiting-time associated to each definition. These distributions are then investigated and compared, and the influence of the definition of an event on statistics is discussed. In particular, power-law distributions are more likely to appear when using a threshold. The sensitivity of the distributions to the definition of an event seems also to be weaker for events found in a highly intermittent time series. Some implications on statistical results obtained from observations are discussed.Comment: 8 pages, 13 figures. Submitted to Astronomy&Astrophysic

    Parallel electric field generation by Alfven wave turbulence

    Full text link
    {This work aims to investigate the spectral structure of the parallel electric field generated by strong anisotropic and balanced Alfvenic turbulence in relation with the problem of electron acceleration from the thermal population in solar flare plasma conditions.} {We consider anisotropic Alfvenic fluctuations in the presence of a strong background magnetic field. Exploiting this anisotropy, a set of reduced equations governing non-linear, two-fluid plasma dynamics is derived. The low-β\beta limit of this model is used to follow the turbulent cascade of the energy resulting from the non-linear interaction between kinetic Alfven waves, from the large magnetohydrodynamics (MHD) scales with kρs1k_{\perp}\rho_{s}\ll 1 down to the small "kinetic" scales with kρs1k_{\perp}\rho_{s} \gg 1, ρs\rho_{s} being the ion sound gyroradius.} {Scaling relations are obtained for the magnitude of the turbulent electromagnetic fluctuations, as a function of kk_{\perp} and kk_{\parallel}, showing that the electric field develops a component parallel to the magnetic field at large MHD scales.} {The spectrum we derive for the parallel electric field fluctuations can be effectively used to model stochastic resonant acceleration and heating of electrons by Alfven waves in solar flare plasma conditions

    A simplified numerical model of coronal energy dissipation based on reduced MHD

    Full text link
    A 3D model intermediate between cellular automata (CA) models and the reduced magnetohydrodynamic (RMHD) equations is presented to simulate solar impulsive events generated along a coronal magnetic loop. The model consists of a set of planes distributed along a magnetic loop between which the information propagates through Alfven waves. Statistical properties in terms of power-laws for energies and durations of dissipative events are obtained, and their agreement with X-ray and UV flares observations is discussed. The existence of observational biases is also discussed.Comment: 11 pages, 9 figures Accepted for publication in Astronomy & Astrophysic
    corecore