1,448 research outputs found

    Lunar rocks as meteoroid detectors

    Get PDF
    About 5000 microcraters on seven lunar rocks recovered during the Apollo 12 mission have been systematically studied using a stereomicroscope. Based on comparisons with laboratory cratering experiments, at least 95 percent of all millimeter sized craters observed were formed by impacts in which the impact velocity exceeded 10 km/s. The dynamics of particle motion near the moon and the distribution of microcraters on the rocks require an extralunar origin for these impacting particles. The microcrater population on at least one side of all rocks studied was in equilibrium for millimeter sized craters; i.e., statistically, craters a few millimeters in diameter and smaller were being removed by the superposition of new craters at the same rate new craters were being formed. The population of craters on such a surface is directly related to the total population of particles impacting that surface. Crater size distribution data together with an experimentally determined relationship between the crater size and the physical parameters of the impacting particle, yield the mass distribution of interplanetary dust at 1 AU

    Local bifurcations in differential equations with state-dependent delay

    Get PDF
    This is the author accepted manuscript. The final version is available from AIP Publishing via the DOI in this record.A common task when analysing dynamical systems is the determination of normal forms near local bifurcations of equilibria. As most of these normal forms have been classified and analysed, finding which particular class of normal form one encounters in a numerical bifurcation study guides follow-up computations. This paper builds on normal form algorithms for equilibria of delay differential equations with constant delay that were developed and implemented in DDE-Biftool recently. We show how one can extend these methods to delay-differential equations with state-dependent delay (sd-DDEs). Since higher degrees of regularity of local center manifolds are still open for sd-DDEs, we give an independent (still only partial) argument which phenomena from the truncated normal must persist in the full sd-DDE. In particular, we show that all invariant manifolds with a sufficient degree of normal hyperbolicity predicted by the normal form exist also in the full sd-DDEJ.S. gratefully acknowledges the financial support of the EPSRC via grants EP/N023544/1 and EP/N014391/1. J.S. has also received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement number 643073

    The micrometeoroid complex and evolution of the lunar regolith

    Get PDF
    The interaction of the micrometeoroid complex with the lunar surface is evidenced by numerous glass-lined microcraters on virtually every lunar surface exposed to space. Such craters range in size from less than .1 micron to approximately 2 sq cm diameter. Using small scale laboratory cratering experiments for calibration, the observed crater-sized frequency distributions may be converted into micrometeoroid mass distributions. These lunar mass distributions are in essential agreement with satellite data. Some physical properties of micrometeoroids may be deduced by comparing lunar crater geometries with those obtained in laboratory experiments. The proponderance of circular outlines of lunar microcraters necessitates equidimensional, if not spherical, micrometeoroids

    Hybridization of electron subbands in a double quantum well at quantizing magnetic field

    Full text link
    We employ magnetocapacitance and far-infrared spectroscopy techniques to study the spectrum of the double-layer electron system in a parabolic quantum well with a narrow tunnel barrier in the centre. For gate-bias-controlled asymmetric electron density distributions in this soft two-subband system we observe both individual subband gaps and double layer gaps at integer filling factor ν\nu. The bilayer gaps are shown to be either trivial common for two subbands or caused by hybridization of electron subbands in magnetic field. We describe the observed hybrid gaps at ν=1\nu=1 and ν=2\nu=2 within a simple model for the modified bilayer spectrum.Comment: REVTeX, 24 pages, 9 figures included. Submitted to Phys. Rev.

    A brown dwarf companion to the intermediate-mass star HR6037

    Full text link
    In the course of an imaging survey we have detected a visual companion to the intermediate-mass star HR 6037. In this letter, we present two epoch observations of the binary with NACO/VLT, and near-IR spectroscopy of the secondary with ISAAC/VLT. The NACO observations allow us to confirm HR 6037B as a co-moving companion. Its J and H band ISAAC spectra suggest the object has an spectral type of M9+-1, with a surface gravity intermediate between that of 10 Myr dwarfs and field dwarfs with identical spectral type. The comparison of its Ks-band photometry with evolutionary tracks allows us to derive a mass, effective temperature, and surface gravity of 62+-20 MJup, Teff = 2330+-200 K, and log g = 5.1+-0.2, respectively. The small mass ratio of the binary, -0.03, and its long orbital period, -5000 yr, makes HR 6037 a rare and uncommon binary system.Comment: (5 pages, 4 figures, accepted for publication in A&A Letters

    Analyzing Somatic DNA Repair in Arabidopsis Meiotic Mutants

    Get PDF
    Meiotic and somatic recombination share a common set of factors. Thus, the analysis of somatic DNA repair in meiotic mutant lines should be of special interest. Growth defects of mutant plants induced by specific genotoxins can thereby hint to DNA repair functions of the affected proteins. Here, we describe two kinds of approaches to characterize deficiencies in DNA repair in mutant lines of Arabidopsis thaliana, after genotoxin treatment

    Magnetic-Field-Induced Hybridization of Electron Subbands in a Coupled Double Quantum Well

    Full text link
    We employ a magnetocapacitance technique to study the spectrum of the soft two-subband (or double-layer) electron system in a parabolic quantum well with a narrow tunnel barrier in the centre. In this system unbalanced by gate depletion, at temperatures T\agt 30 mK we observe two sets of quantum oscillations: one originates from the upper electron subband in the closer-to-the-gate part of the well and the other indicates the existence of common gaps in the spectrum at integer fillings. For the lowest filling factors ν=1\nu=1 and ν=2\nu=2, both the common gap presence down to the point of one- to two-subband transition and their non-trivial magnetic field dependences point to magnetic-field-induced hybridization of electron subbands.Comment: Major changes, added one more figure, the latest version to be published in JETP Let

    The micrometeoroid complex and evolution of the lunar regolith

    Get PDF
    Monte Carlo-based computer calculations, as well as analytical approaches utilizing probabilistic arguments, were applied to gain insight into the principal regolith impact processes and their resulting kinetics. Craters 10 to 1500 m in diameter are largely responsible for the overall growth of the regolith. As a consequence the regolith has to be envisioned as a complex sequence of discrete ejecta blankets. Such blankets constitute first-order discontinuities in the evolving debris layer. The micrometeoroid complex then operates intensely on these fresh ejecta blankets and accomplishes only in an uppermost layer of approximately 1-mm thickness. The absolute flux of micrometeoroids based on lunar rock analyses averaged over the past few 10 to the 6th power years is approximately an order of magnitude lower than presentday satellite fluxes; however, there is indication that the flux increased in the past 10 to the 4th power years to become compatible with the satellite data. Furthermore, there is detailed evidence that the micrometeoroid complex existed throughout geologic time

    The cool atmospheres of the binary brown dwarf eps Indi B

    Full text link
    We have imaged ϵ\epsilon Indi B, the closest brown dwarf binary known, with VISIR at the VLT in three narrow-band mid-infrared bandpasses located around 8.6μ\mum, 10.5μ\mum and 11.3μ\mum. We are able to spatially resolve both components, and determine accurate mid-infrared photometry for both components independently. In particular, our VISIR observations probe the NH3_3 feature in the atmospheres of the cooler and warmer brown dwarfs. For the first time, we can disentangle the contributions of the two components, and find that % our photometry of ϵ\epsilon IndiBb is in good agreement with recent ``cloud-free'' atmosphere models having an effective temperature of Teff=800T_\mathrm{eff}=800 K. With an assumed age of 1 Gyr for the ϵ\epsilon Indi system, component Ba agrees more with Teff≈1100T_\mathrm{eff} \approx 1100 K rather than with Teff=1200T_\mathrm{eff}=1200 K, as suggested by SPITZER spectroscopic observations of the combined ϵ\epsilon Indi B system (Roellig et al., 2004). Even higher effective temperatures appear inconsistent with our absolute photometry, as they would imply an unphysical small size of the brown dwarf ϵ\epsilon IndiBa.Comment: 4 pages, 2 figure

    Systems toxicology: real world applications and opportunities

    Get PDF
    Systems Toxicology aims to change the basis of how adverse biological effects of xenobiotics are characterized from empirical end points to describing modes of action as adverse outcome pathways and perturbed networks. Toward this aim, Systems Toxicology entails the integration of in vitro and in vivo toxicity data with computational modeling. This evolving approach depends critically on data reliability and relevance, which in turn depends on the quality of experimental models and bioanalysis techniques used to generate toxicological data. Systems Toxicology involves the use of large-scale data streams ("big data"), such as those derived from omics measurements that require computational means for obtaining informative results. Thus, integrative analysis of multiple molecular measurements, particularly acquired by omics strategies, is a key approach in Systems Toxicology. In recent years, there have been significant advances centered on in vitro test systems and bioanalytical strategies, yet a frontier challenge concerns linking observed network perturbations to phenotypes, which will require understanding pathways and networks that give rise to adverse responses. This summary perspective from a 2016 Systems Toxicology meeting, an international conference held in the Alps of Switzerland, describes the limitations and opportunities of selected emerging applications in this rapidly advancing field. Systems Toxicology aims to change the basis of how adverse biological effects of xenobiotics are characterized, from empirical end points to pathways of toxicity. This requires the integration of in vitro and in vivo data with computational modeling. Test systems and bioanalytical technologies have made significant advances, but ensuring data reliability and relevance is an ongoing concern. The major challenge facing the new pathway approach is determining how to link observed network perturbations to phenotypic toxicity
    • …
    corecore