331 research outputs found

    Whole Genome Interpretation for a Family of Five.

    Get PDF
    Although best practices have emerged on how to analyse and interpret personal genomes, the utility of whole genome screening remains underdeveloped. A large amount of information can be gathered from various types of analyses via whole genome sequencing including pathogenicity screening, genetic risk scoring, fitness, nutrition, and pharmacogenomic analysis. We recognize different levels of confidence when assessing the validity of genetic markers and apply rigorous standards for evaluation of phenotype associations. We illustrate the application of this approach on a family of five. By applying analyses of whole genomes from different methodological perspectives, we are able to build a more comprehensive picture to assist decision making in preventative healthcare and well-being management. Our interpretation and reporting outputs provide input for a clinician to develop a healthcare plan for the individual, based on genetic and other healthcare data

    APPLaUD: access for patients and participants to individual level uninterpreted genomic data.

    Get PDF
    BACKGROUND: There is a growing support for the stance that patients and research participants should have better and easier access to their raw (uninterpreted) genomic sequence data in both clinical and research contexts. MAIN BODY: We review legal frameworks and literature on the benefits, risks, and practical barriers of providing individuals access to their data. We also survey genomic sequencing initiatives that provide or plan to provide individual access. Many patients and research participants expect to be able to access their health and genomic data. Individuals have a legal right to access their genomic data in some countries and contexts. Moreover, increasing numbers of participatory research projects, direct-to-consumer genetic testing companies, and now major national sequencing initiatives grant individuals access to their genomic sequence data upon request. CONCLUSION: Drawing on current practice and regulatory analysis, we outline legal, ethical, and practical guidance for genomic sequencing initiatives seeking to offer interested patients and participants access to their raw genomic data

    Translating the discourse of medical tourism: A catalogue of resources and corpus for translators and researchers

    Get PDF
    © 2020 The Authors. Published by SKASE Journal of Translation and Interpretation. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: http://www.skase.sk/Volumes/JTI15/pdf_doc/03.pdfThe recent increase in medical tourism in Europe also means more written contents are translated on the web to get to potential clients. Translating cross-border care language is somehow challenging because it implies different agents and linguistic fields making it difficult for translators and researchers to be fully apprehended. We hereby present a catalogue of possible informative resources on medical tourism and an ad hoc corpus based on Spanish medical websites-focused on aesthetics and cosmetics-that were translated into English.Published versio

    Phenotype-loci associations in networks of patients with rare disorders: application to assist in the diagnosis of novel clinical cases

    Get PDF
    Copy number variations (CNVs) are genomic structural variations (deletions, duplications, or translocations) that represent the 4.8–9.5% of human genome variation in healthy individuals. In some cases, CNVs can also lead to disease, being the etiology of many known rare genetic/genomic disorders. Despite the last advances in genomic sequencing and diagnosis, the pathological effects of many rare genetic variations remain unresolved, largely due to the low number of patients available for these cases, making it difficult to identify consistent patterns of genotype–phenotype relationships. We aimed to improve the identification of statistically consistent genotype–phenotype relationships by integrating all the genetic and clinical data of thousands of patients with rare genomic disorders (obtained from the DECIPHER database) into a phenotype–patient–genotype tripartite network. Then we assessed how our network approach could help in the characterization and diagnosis of novel cases in clinical genetics. The systematic approach implemented in this work is able to better define the relationships between phenotypes and specific loci, by exploiting large-scale association networks of phenotypes and genotypes in thousands of rare disease patients. The application of the described methodology facilitated the diagnosis of novel clinical cases, ranking phenotypes by locus specificity and reporting putative new clinical features that may suggest additional clinical follow-ups. In this work, the proof of concept developed over a set of novel clinical cases demonstrates that this network-based methodology might help improve the precision of patient clinical records and the characterization of rare syndromes

    MSAViewer:interactive JavaScript visualization of multiple sequence alignments

    Get PDF
    Summary: The MSAViewer is a quick and easy visualization and analysis JavaScript component for Multiple Sequence Alignment data of any size. Core features include interactive navigation through the alignment, application of popular color schemes, sorting, selecting and filtering. The MSAViewer is ‘web ready’: written entirely in JavaScript, compatible with modern web browsers and does not require any specialized software. The MSAViewer is part of the BioJS collection of components. Availability and Implementation: The MSAViewer is released as open source software under the Boost Software License 1.0. Documentation, source code and the viewer are available at http://msa.biojs.net/. Supplementary information: Supplementary data are available at Bioinformatics online. Contact: [email protected]

    The EGR2 gene is involved in axonal Charcot-Marie-Tooth disease

    Full text link
    [EN] Background and purpose: A three-generation family affected by axonal Charcot-Marie-Tooth disease (CMT) was investigated with the aim of discovering genetic defects and to further characterize the phenotype. Methods: The clinical, nerve conduction studies and muscle magnetic resonance images of the patients were reviewed. A whole exome sequencing was performed and the changes were investigated by genetic studies, in silico analysis and luciferase reporter assays. Results: A novel c.1226G>A change (p.R409Q) in the EGR2 gene was identified. Patients presented with a typical, late-onset axonal CMT phenotype with variable severity that was confirmed in the ancillary tests. The in silico studies showed that the residue R409 is an evolutionary conserved amino acid. The p.R409Q mutation, which is predicted as probably damaging, would alter the conformation of the protein slightly and would cause a decrease of gene expression. Conclusions: This is the first report of an EGR2 mutation presenting as an axonal CMT phenotype with variable severity. This study broadens the phenotype of the EGR2-related neuropathies and suggests that the genetic testing of patients suffering from axonal CMT should include the EGR2 gene.This collaborative joint project is awarded by IRDiRC and funded by the Instituto de Salud Carlos III (ISCIII) - Subdireccion General de Evaluacion y Fomento de la Investigacion within the framework of the National R+D+I Plan (Grants IR11/TREAT-CMT, PI12/00946 and PI12/00453), co-funded with FEDER funds. C.E. has a "Miguel Servet' contract funded by the ISCIII and Centro de Investigacion Principe Felipe (CIPF) (Grant no. CPII14/00002). We are also grateful to Itziar Llopis for sample management.Sevilla, T.; Sivera, R.; Martínez-Rubio, D.; Lupo, V.; Chumillas, M.; Calpena-Corpas, E.; Dopazo, J.... (2015). The EGR2 gene is involved in axonal Charcot-Marie-Tooth disease. European Journal of Neurology. 22(12):1548-1555. https://doi.org/10.1111/ene.1278215481555221

    Multifaceted roles of nitric oxide in tomato fruit ripening: NO-induced metabolic rewiring and consequences for fruit quality traits

    Get PDF
    Nitric oxide (NO) has been implicated as part of the ripening regulatory network in fleshy fruits. However, very little is known about the simultaneous action of NO on the network of regulatory events and metabolic reactions behind ripening-related changes in fruit color, taste, aroma and nutritional value. Here, we performed an in-depth characterization of the concomitant changes in tomato (Solanum lycopersicum) fruit transcriptome and metabolome associated with the delayed-ripening phenotype caused by NO supplementation at the pre-climacteric stage. Approximately one-third of the fruit transcriptome was altered in response to NO, including a multilevel down-regulation of ripening regulatory genes, which in turn restricted the production and tissue sensitivity to ethylene. NO also repressed hydrogen peroxide-scavenging enzymes, intensifying nitro-oxidative stress and S-nitrosation and nitration events throughout ripening. Carotenoid, tocopherol, flavonoid and ascorbate biosynthesis were differentially affected by NO, resulting in overaccumulation of ascorbate (25%) and flavonoids (60%), and impaired lycopene production. In contrast, the biosynthesis of compounds related to tomato taste (sugars, organic acids, amino acids) and aroma (volatiles) was slightly affected by NO. Our findings indicate that NO triggers extensive transcriptional and metabolic rewiring at the early ripening stage, modifying tomato antioxidant composition with minimal impact on fruit taste and aroma.This work was supported by the São Paulo Research Foundation (FAPESP) (grants 2018/16389-8, 2016/04924-0, 2017/17935-3 and 2016/01128-9), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (grants 422287/2018-0, 305012/2018-5, 303332/2019-0 and 300986/2018-1), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001. The research work of FJC and JMP is supported by a European Regional Development Fund cofinanced grant from the Ministry of Economy and Competitiveness (AGL2015-65104-P and PID2019-103924GB-I00), Spain

    The GOBLET training portal: A global repository of bioinformatics training materials, courses and trainers

    Get PDF
    Summary: Rapid technological advances have led to an explosion of biomedical data in recent years. The pace of change has inspired new collaborative approaches for sharing materials and resources to help train life scientists both in the use of cutting-edge bioinformatics tools and databases and in how to analyse and interpret large datasets. A prototype platform for sharing such training resources was recently created by the Bioinformatics Training Network (BTN). Building on this work, we have created a centralized portal for sharing training materials and courses, including a catalogue of trainers and course organizers, and an announcement service for training events. For course organizers, the portal provides opportunities to promote their training events; for trainers, the portal offers an environment for sharing materials, for gaining visibility for their work and promoting their skills; for trainees, it offers a convenient one-stop shop for finding suitable training resources and identifying relevant training events and activities locally and worldwide
    corecore