236 research outputs found

    Numerical consistency check between two approaches to radiative corrections for neutrino masses and mixings

    Full text link
    We briefly outline the two popular approaches on radiative corrections to neutrino masses and mixing angles, and then carry out a detailed numerical analysis for a consistency check between them in MSSM. We find that the two approaches are nearly consistent with a small discrepancy of a factor of 13 percent in mass eigenvalues at low energy scale, but the predictions on mixing angles are almost consistent. We check the stability of the three types of neutrino models, i.e., hierarchical, inverted hierarchical and degenerate models, under radiative corrections, using both approaches, and find consistent conclusions. The neutrino mass models which are found to be stable under radiative corrections in MSSM are the normal hierarchical model and the inverted hierarchical model with opposite CP parity. We also carry out numerical analysis on some important conjectures related to radiative corrections in MSSM, viz., radiative magnification of solar and atmospheric mixings in case of nearly degenerate model having same CP parity (MPR conjecture) and radiative generation of solar mass scale in exactly two-fold degenerate model with opposite CP parity and non-zero reactor angle (JM conjecture). We observe certain exceptions to these conjectures. Finally the effect of scale-dependent vacuum expectation value in neutrino mass renormalisation is discussed.Comment: 26 pages, 5 figures,references added, typos corrected and text modifie

    Bottom-up approach and supersymmetry breaking

    Full text link
    We present a bottom-up approach to the question of supersymmetry breaking in the MSSM. Starting with the experimentally measurable low-energy supersymmetry breaking parameters, which can take any values consistent with present experimental constraints, we evolve them up to an arbitrary high energy scale. Approximate analytical expressions for such an evolution, valid for low and moderate values of tanÎČtan\beta, are presented. We then discuss qualitative properties of the high-energy parameter space and, in particular, identify the conditions on the low energy spectrum that are necessary for the parameters at the high energy scale to satisfy simple regular pattern such as universality or partial universality. As an illustrative example, we take low energy parameters for which light sparticles, within the reach of the LEP2 collider, appear in the spectrum, and which do not affect the Standard Model agreement with the precision measurement data. Comparison between supersymmetry breaking at the GUT scale and at a low energy scale is made.Comment: 33 pages (14 figures

    High scale mixing unification and large neutrino mixing angles

    Get PDF
    Starting with the hypothesis that quark and lepton mixings are identical at or near the GUT scale, we show that the large solar and atmospheric neutrino mixing angles together with the small reactor angle Ue3U_{e3} can be understood purely as a result of renormalization group evolution. The only requirements are that the three neutrinos must be quasi degenerate in mass and have same CP parity. It predicts that the common Majorana mass for the neutrinos must be larger than 0.1 eV making the idea testable in the currently planned or ongoing experiments searching for neutrinoless-double-beta decay.Comment: 10 pages, eight figure, two tables; new material added; results remain unchange

    Generation of large flavor mixing from radiative corrections

    Get PDF
    We provide a model independent criterion which would guarantee a large flavor mixing of two quasi-degenerate Majorana neutrinos at the low scale, irrespective of the mixing at the high scale. We also show that such a situation is realizable for a phenomenologically interesting range of parameters of the weak scale theory. We further show that for a similar condition to be implementable for the three generation case, the CP parity of one of the neutrinos needs to be opposite to that of the others.Comment: 14 pages RevTeX, 2 eps figures. Minor changes made, a few references adde

    Beyond MFV in family symmetry theories of fermion masses

    Get PDF
    Minimal Flavour Violation (MFV) postulates that the only source of flavour changing neutral currents and CP violation, as in the Standard Model, is the CKM matrix. However it does not address the origin of fermion masses and mixing and models that do usually have a structure that goes well beyond the MFV framework. In this paper we compare the MFV predictions with those obtained in models based on spontaneously broken (horizontal) family symmetries, both Abelian and non-Abelian. The generic suppression of flavour changing processes in these models turns out to be weaker than in the MFV hypothesis. Despite this, in the supersymmetric case, the suppression may still be consistent with a solution to the hierarchy problem, with masses of superpartners below 1 TeV. A comparison of FCNC and CP violation in processes involving a variety of different family quantum numbers should be able to distinguish between various family symmetry models and models satisfying the MFV hypothesis.Comment: 34 pages, no figure

    Neutrino Unification

    Get PDF
    Present neutrino data are consistent with neutrino masses arising from a common seed at some ``neutrino unification'' scale MXM_X. Such a simple theoretical ansatz naturally leads to quasi-degenerate neutrinos that could lie in the electron-volt range with neutrino mass splittings induced by renormalization effects associated with supersymmetric thresholds. In such a scheme the leptonic analogue of the Cabibbo angle ξ⊙\theta_{\odot} describing solar neutrino oscillations is nearly maximal. Its exact value is correlated with the smallness of ξreactor\theta_{reactor}. These features agree both with latest data on the solar neutrino spectra and with the reactor neutrino data. The two leading mass-eigenstate neutrinos present in \ne form a pseudo-Dirac neutrino, avoiding conflict with neutrinoless double beta decay.Comment: RevTex format, 2 figures, 4 pages, a few new references, no other important change, figures unchanged, version to be published in PR

    Improved full one-loop corrections to A^0 -> \sf_1 \sf_2 and \sf_2 -> \sf_1 A^0

    Full text link
    We calculate the full electroweak one-loop corrections to the decay of the CP-odd Higgs boson A^0 into scalar fermions in the minimal supersymmetric extension of the Standard Model. For this purpose many parameters of the MSSM have to be properly renormalized in the on-shell renormalization scheme. We have also included the SUSY-QCD corrections. For the decay into bottom squarks and tau sleptons, especially for large \tan\b, the corrections can be very large making the perturbation expansion unreliable. We solve this problem by an appropriate definition of the tree-level coupling in terms of running fermion masses and running trilinear couplings A_f. We also discuss the decay of heavy scalar fermions into light scalar fermions and A^0. We find that the corrections can be sizeable and therefore cannot be neglected.Comment: 42 pages, 20 figures (23 eps-files

    Revisiting Leptogenesis in a SUSY SU(5) x T' Model of Flavour

    Get PDF
    We investigate the generation of the baryon asymmetry of the Universe within a SUSY SU(5) x T' model of flavour, which gives rise to realistic masses and mixing patterns for quarks and leptons. The model employs the see-saw mechanism for generation of the light neutrino masses and the baryon asymmetry is produced via leptogenesis. We perform detailed calculations of both the CP violating lepton asymmetries, originating from the decays of the heavy Majorana neutrinos operative in the see-saw mechanism, and of the efficiency factors which account for the lepton asymmetry wash-out processes in the Early Universe. The latter are calculated by solving numerically the system of Boltzmann equations describing the generation and the evolution of the lepton asymmetries. The baryon asymmetry in the model considered is proportional to the J_{CP} factor, which determines the magnitude of CP violation effects in the oscillations of flavour neutrinos. The leptogenesis scale can be sufficiently low, allowing to avoid the potential gravitino problem.Comment: 14 pages, 1 figure; published versio

    Constraints on the Charged Higgs Sector from the Tevatron Collider Data on Top Quark Decay

    Get PDF
    The top quark data in the lepton plus τ\tau channel offers a viable probe for the charged Higgs boson signal. We analyse the recent Tevatron collider data in this channel to obtain a significant limit on the H±H^\pm mass in the large tan⁥ÎČ\tan\beta region.Comment: 8 pages, LaTeX file; 2 figures included (PS files

    Z\rightarrow A^0 A^0\nu\bar\nuand and e^+e^-\rightarrow A^0 A^0 Z$ in Two Higgs Doublet Models

    Full text link
    In LEP searches for the neutral CP-odd scalar A0A^0 of a multi-Higgs doublet model, experimenters have searched for Z→h0A0Z\rightarrow h^0 A^0 (where h0h^0 is the lightest CP-even scalar). No model-independent limit on the A0A^0 mass can be deduced from present data if mh0>mZm_{h^0}>m_Z. In this paper, we compute the rates for Z→A0A0ΜΜˉZ\rightarrow A^0 A^0\nu\bar\nu and e+e−→A0A0Ze^+e^-\rightarrow A^0 A^0 Z. Assuming that no light CP-even neutral scalars exist, the branching ratio for Z→A0A0ΜΜˉZ\rightarrow A^0 A^0\nu\bar\nu is found to be less than 1.4×10−81.4\times10^{-8}. At higher e+e−e^+e^- center-of-mass energies, σ(e+e−→A0A0Z)\sigma(e^+e^-\rightarrow A^0 A^0 Z) peaks at 0.50.5~fb. A comparison with other direct searches for the A0A^0 is briefly considered.Comment: 16 pages, PHYZZX forma
    • 

    corecore