1,184 research outputs found

    Radio-Frequency Spectroscopy of Ultracold Fermions

    Full text link
    Radio-frequency techniques were used to study ultracold fermions. We observed the absence of mean-field "clock" shifts, the dominant source of systematic error in current atomic clocks based on bosonic atoms. This is a direct consequence of fermionic antisymmetry. Resonance shifts proportional to interaction strengths were observed in a three-level system. However, in the strongly interacting regime, these shifts became very small, reflecting the quantum unitarity limit and many-body effects. This insight into an interacting Fermi gas is relevant for the quest to observe superfluidity in this system.Comment: 6 pages, 6 figure

    Dust, Ice and Gas in Time (DIGIT) Herschel program first results: A full PACS-SED scan of the gas line emission in protostar DK Cha

    Get PDF
    DK Cha is an intermediate-mass star in transition from an embedded configuration to a star plus disk stage. We aim to study the composition and energetics of the circumstellar material during this pivotal stage. Using the Range Scan mode of PACS on the Herschel Space Observatory, we obtained a spectrum of DK Cha from 55 to 210 micron as part of the DIGIT Key Program. Almost 50 molecular and atomic lines were detected, many more than the 7 lines detected in ISO-LWS. Nearly the entire ladder of CO from J=14-13 to 38-37 (E_u/k = 4080 K), water from levels as excited as E_u/k = 843 K, and OH lines up to E_u/k = 290 K were detected. The continuum emission in our PACS SED scan matches the flux expected from a model consisting of a star, a surrounding disk of 0.03 Solar mass, and an envelope of a similar mass, supporting the suggestion that the object is emerging from its main accretion stage. Molecular, atomic, and ionic emission lines in the far-infrared reveal the outflow's influence on the envelope. The inferred hot gas can be photon-heated, but some emission could be due to C-shocks in the walls of the outflow cavity.Comment: 4 Page letter, To appear in A&A special issue on Hersche

    Herschel observations of the hydroxyl radical (OH) in young stellar objects

    Get PDF
    Water in Star-forming regions with Herschel (WISH) is a Herschel Key Program investigating the water chemistry in young stellar objects (YSOs) during protostellar evolution. Hydroxyl (OH) is one of the reactants in the chemical network most closely linked to the formation and destruction of H2O. High-temperature chemistry connects OH and H2O through the OH + H2 H2O + H reactions. Formation of H2O from OH is efficient in the high-temperature regime found in shocks and the innermost part of protostellar envelopes. Moreover, in the presence of UV photons, OH can be produced from the photo-dissociation of H2O. High-resolution spectroscopy of the OH 163.12 micron triplet towards HH 46 and NGC 1333 IRAS 2A was carried out with the Heterodyne Instrument for the Far Infrared (HIFI) on board Herschel. The low- and intermediate-mass YSOs HH 46, TMR 1, IRAS 15398-3359, DK Cha, NGC 7129 FIRS 2, and NGC 1333 IRAS 2A were observed with the Photodetector Array Camera and Spectrometer (PACS) in four transitions of OH and two [OI] lines. The OH transitions at 79, 84, 119, and 163 micron and [OI] emission at 63 and 145 micron were detected with PACS towards the class I low-mass YSOs as well as the intermediate-mass and class I Herbig Ae sources. No OH emission was detected from the class 0 YSO NGC 1333 IRAS 2A, though the 119 micron was detected in absorption. With HIFI, the 163.12 micron was not detected from HH 46 and only tentatively detected from NGC 1333 IRAS 2A. The combination of the PACS and HIFI results for HH 46 constrains the line width (FWHM > 11 km/s) and indicates that the OH emission likely originates from shocked gas. This scenario is supported by trends of the OH flux increasing with the [OI] flux and the bolometric luminosity. Similar OH line ratios for most sources suggest that OH has comparable excitation temperatures despite the different physical properties of the sources.Comment: Accepted for publication in Astronomy and Astrophysics (Herschel special issue

    Reduction of the size of datasets by using evolutionary feature selection: the case of noise in a modern city

    Get PDF
    Smart city initiatives have emerged to mitigate the negative effects of a very fast growth of urban areas. Most of the population in our cities are exposed to high levels of noise that generate discomfort and different health problems. These issues may be mitigated by applying different smart cities solutions, some of them require high accurate noise information to provide the best quality of serve possible. In this study, we have designed a machine learning approach based on genetic algorithms to analyze noise data captured in the university campus. This method reduces the amount of data required to classify the noise by addressing a feature selection optimization problem. The experimental results have shown that our approach improved the accuracy in 20% (achieving an accuracy of 87% with a reduction of up to 85% on the original dataset).Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tech. This research has been partially funded by the Spanish MINECO and FEDER projects TIN2016-81766-REDT (http://cirti.es), and TIN2017-88213-R (http://6city.lcc.uma.es)

    Microscopic Dynamics in a Strongly Interacting Bose-Einstein Condensate

    Get PDF
    An initially stable 85Rb Bose-Einstein condensate (BEC) was subjected to a carefully controlled magnetic field pulse in the vicinity of a Feshbach resonance. This pulse probed the strongly interacting regime for the condensate, with calculated values for the diluteness parameter (na^3) ranging from 0.01 to 0.5. The field pulse was observed to cause loss of atoms from the condensate on remarkably short time scales (>=10 microsec). The dependence of this loss on magnetic field pulse shape and amplitude was measured. For triangular pulses shorter than 1 ms, decreasing the pulse length actually increased the loss, until extremely short time scales (a few tens of microseconds) were reached. Such time scales and dependencies are very different from those expected in traditional condensate inelastic loss processes, suggesting the presence of new microscopic BEC physics.Comment: 4 pages in latex2E, 4 eps figures; revised Fig.1, revised scatt.lengths, added discussion, new refs., resubmitted to PR

    Association between Ambient Noise Exposure and School Performance of Children Living in An Urban Area: A Cross-Sectional Population-Based Study

    No full text
    16 pages Article disponible à l'adresse suivante : http://link.springer.com/article/10.1007%2Fs11524-013-9843-6International audienceMost of the studies investigating the effects of the external noise on children's school performance have concerned pupils in schools exposed to high levels due to aircraft or freeway traffic noise. However, little is known about the consequences of the chronic ambient noise exposure at a level commonly encountered in residential urban areas. This study aimed to assess the relationship between the school performance of 8- to 9-year-old-children living in an urban environment and their chronic ambient noise exposure at home and at school. The children's school performances on the national standardized assessment test in French and mathematics were compared with the environmental noise levels. Children's exposure to ambient noise was calculated in front of their bedrooms (Lden) and schools (LAeq,day) using noise prediction modeling. Questionnaires were distributed to the families to collect potential confounding factors. Among the 746 respondent children, 586 were included in multilevel analyses. On average, the LAeq,day at school was 51.5 dB (SD= 4.5 dB; range = 38-58 dB) and the outdoor Lden at home was 56.4 dB (SD= 4.4 dB; range = 44-69 dB). LAeq,day at school was associated with impaired mathematics score (p = 0.02) or impaired French score (p = 0.01). For a + 10 dB gap, the French and mathematics scores were on average lower by about 5.5 points. Lden at home was significantly associated with impaired French performance when considered alone (p < 10(-3)) and was borderline significant when the combined home-school exposure was considered (p = 0.06). The magnitude of the observed effect on school performance may appear modest, but should be considered in light of the number of people who are potentially chronically exposed to similar environmental noise levels

    Uncertainty-principle noise in vacuum-tunneling transducers

    Full text link
    The fundamental sources of noise in a vacuum-tunneling probe used as an electromechanical transducer to monitor the location of a test mass are examined using a first-quantization formalism. We show that a tunneling transducer enforces the Heisenberg uncertainty principle for the position and momentum of a test mass monitored by the transducer through the presence of two sources of noise: the shot noise of the tunneling current and the momentum fluctuations transferred by the tunneling electrons to the test mass. We analyze a number of cases including symmetric and asymmetric rectangular potential barriers and a barrier in which there is a constant electric field. Practical configurations for reaching the quantum limit in measurements of the position of macroscopic bodies with such a class of transducers are studied

    Gene transfer into hepatocytes using asialoglycoprotein receptor mediated endocytosis of DNA complexed with an artificial tetra-antennary galactose ligand

    Get PDF
    We have constructed an artificial ligand for the hepatocyte-specific asialoglycoprotein receptor for the purpose of generating a synthetic delivery system for DNA. This ligand has a tetra-antennary structure, containing four terminal galactose residues on a branched carrier peptide. The carbohydrate residues of this glycopeptide were introduced by reductive coupling of lactose to the alpha- and epsilon-amino groups of the two N-terminal lysines on the carrier peptide. The C-terminus of the peptide, containing a cysteine separated from the branched N-terminus by a 10 amino acid spacer sequence, was used for conjugation to 3-(2-pyridyldithio)propionate-modified polylysine via disulfide bond formation. Complexes containing plasmid DNA bound to these galactose-polylysine conjugates have been used for asialoglycoprotein receptor-mediated transfer of a luciferase gene into human (HepG2) and murine (BNL CL.2) hepatocyte cell lines. Gene transfer was strongly promoted when amphipathic peptides with pH-controlled membrane-disruption activity, derived from the N-terminal sequence of influenza virus hemagglutinin HA-2, were also present in these DNA complexes. Thus, we have essentially borrowed the small functional domains of two large proteins, asialoglycoprotein and hemagglutinin, and assembled them into a supramolecular complex to generate an efficient gene-transfer system

    Quantum interference structures in the conductance plateaus of gold nanojunctions

    Get PDF
    The conductance of breaking metallic nanojunctions shows plateaus alternated with sudden jumps, corresponding to the stretching of stable atomic configurations and atomic rearrangements, respectively. We investigate the structure of the conductance plateaus both by measuring the voltage dependence of the plateaus' slope on individual junctions and by a detailed statistical analysis on a large amount of contacts. Though the atomic discreteness of the junction plays a fundamental role in the evolution of the conductance, we find that the fine structure of the conductance plateaus is determined by quantum interference phenomenon to a great extent.Comment: 4 pages, 4 figure
    • 

    corecore