47 research outputs found

    Wild Skylarks Seasonally Modulate Energy Budgets but Maintain Energetically Costly Inflammatory Immune Responses throughout the Annual Cycle

    Get PDF
    A central hypothesis of ecological immunology is that immune defences are traded off against competing physiological and behavioural processes. During energetically demanding periods, birds are predicted to switch from expensive inflammatory responses to less costly immune responses. Acute phase responses (APRs) are a particularly costly form of immune defence, and, hence, seasonal modulations in APRs are expected. Yet, hypotheses about APR modulation remain untested in free-living organisms throughout a complete annual cycle. We studied seasonal modulations in the APRs and in the energy budgets of skylarks Alauda arvensis, a partial migrant bird from temperate zones that experiences substantial ecological changes during its annual cycle. We characterized throughout the annual cycle changes in their energy budgets by measuring basal metabolic rate (BMR) and body mass. We quantified APRs by measuring the effects of a lipopolysaccharide injection on metabolic rate, body mass, body temperature, and concentrations of glucose and ketone. Body mass and BMR were lowest during breeding, highest during winter and intermediate during spring migration, moult and autumn migration. Despite this variation in energy budgets, the magnitude of the APR, as measured by all variables, was similar in all annual cycle stages. Thus, while we find evidence that some annual cycle stages are relatively more energetically constrained, we find no support for the hypothesis that during these annual cycle stages birds compromise an immune defence that is itself energetically costly. We suggest that the ability to mount an APR may be so essential to survival in every annual cycle stage that skylarks do not trade off this costly form of defence with other annual cycle demands

    A multicenter randomized controlled trial evaluating the effect of small stitches on the incidence of incisional hernia in midline incisions

    Get PDF
    Contains fulltext : 95575.pdf (publisher's version ) (Open Access)BACKGROUND: The median laparotomy is frequently used by abdominal surgeons to gain rapid and wide access to the abdominal cavity with minimal damage to nerves, vascular structures and muscles of the abdominal wall. However, incisional hernia remains the most common complication after median laparotomy, with reported incidences varying between 2-20%. Recent clinical and experimental data showed a continuous suture technique with many small tissue bites in the aponeurosis only, is possibly more effective in the prevention of incisional hernia when compared to the common used large bite technique or mass closure. METHODS/DESIGN: The STITCH trial is a double-blinded multicenter randomized controlled trial designed to compare a standardized large bite technique with a standardized small bites technique. The main objective is to compare both suture techniques for incidence of incisional hernia after one year. Secondary outcomes will include postoperative complications, direct costs, indirect costs and quality of life. A total of 576 patients will be randomized between a standardized small bites or large bites technique. At least 10 departments of general surgery and two departments of oncological gynaecology will participate in this trial. Both techniques have a standardized amount of stitches per cm wound length and suture length wound length ratio's are calculated in each patient. Follow up will be at 1 month for wound infection and 1 year for incisional hernia. Ultrasound examinations will be performed at both time points to measure the distance between the rectus muscles (at 3 points) and to objectify presence or absence of incisional hernia. Patients, investigators and radiologists will be blinded during follow up, although the surgeon can not be blinded during the surgical procedure. CONCLUSION: The STITCH trial will provide level 1b evidence to support the preference for either a continuous suture technique with many small tissue bites in the aponeurosis only or for the commonly used large bites technique

    The interplay between gonadal steroids and immune defence in affecting a carotenoid-dependent trait

    Get PDF
    The hypothesis that sexual ornaments are honest signals of quality because their expression is dependent on hormones with immune-depressive effects has received ambiguous support. The hypothesis might be correct for those signals that are carotenoid-dependent because the required carotenoid deposition in the signal, stimulated by testosterone, might lower the carotenoid-dependent immune defence of the organism. Two pathways underlying this androgen-dependent honest signaling have been suggested. Firstly, androgens that are needed for ornament expression may suppress immune defence, a cost that only high-quality animals can afford. Alternatively, immune activation may downregulate the production of androgens in low-quality individuals. Which of these alternatives is correct, and to what extent these effects are mediated by the different metabolites of androgens, remain open questions. To provide answers to these questions, we manipulated the levels of testosterone (T), 5α-dihydrotestosterone (DHT), and 17-β-estradiol (E2) in diamond doves Geopelia cuneata, a species in which both sexes exhibit a carotenoid-dependent, androgen-regulated red–orange periorbital ring of bare skin. On the first day of the experiment (day 0), we inserted steroid-releasing implants into groups of birds and on day 14, we subjected half of the birds to an immunological challenge by immunizing them with sheep red blood cells (SRBC). In females, but not in males, androgen but not estradiol treatments reduced antibody production to SRBC. In addition, the immunological challenge reduced redness and size of the trait as well as androgens levels in both sexes and in all treatments. This indicates that an immunological challenge can lower circulating T at the cost of the trait expression. These findings are in accordance with both pathways postulated in the immunocompetence-handicap hypothesis, but do not entirely support the idea that the immunosuppressive effect of androgens yields honest signaling since both T and DHT were not immunosuppressive in males, for which sexual signaling is supposed to be especially important

    Oxidative Stress Mediates Physiological Costs of Begging in Magpie (Pica pica) Nestlings

    Get PDF
    [Background] Theoretical models predict that a cost is necessary to guarantee honesty in begging displays given by offspring to solicit food from their parents. There is evidence for begging costs in the form of a reduced growth rate and immunocompetence. Moreover, begging implies vigorous physical activity and attentiveness, which should increase metabolism and thus the releasing of pro-oxidant substances. Consequently, we predict that soliciting offspring incur a cost in terms of oxidative stress, and growth rate and immune response (processes that generate pro-oxidants substances) are reduced in order to maintain oxidative balance. [Methodology/Principal Findings] We test whether magpie (Pica pica) nestlings incur a cost in terms of oxidative stress when experimentally forced to beg intensively, and whether oxidative balance is maintained by reducing growth rate and immune response. Our results show that begging provokes oxidative stress, and that nestlings begging for longer bouts reduce growth and immune response, thereby maintaining their oxidative status. [Conclusions/Significance] These findings help explaining the physiological link between begging and its associated growth and immunocompetence costs, which seems to be mediated by oxidative stress. Our study is a unique example of the complex relationships between the intensity of a communicative display (begging), oxidative stress, and life-history traits directly linked to viability.GM-R was supported by the Spanish Government (Ministerio de Ciencia y Tecnología, “Juan de la Cierva” program), and TR was supported by the Consejo Superior de Investigaciones Científicas (CSIC; Proyectos Intramurales Especiales)

    Immunological Change in a Parasite-Impoverished Environment: Divergent Signals from Four Island Taxa

    Get PDF
    Dramatic declines of native Hawaiian avifauna due to the human-mediated emergence of avian malaria and pox prompted an examination of whether island taxa share a common altered immunological signature, potentially driven by reduced genetic diversity and reduced exposure to parasites. We tested this hypothesis by characterizing parasite prevalence, genetic diversity and three measures of immune response in two recently-introduced species (Neochmia temporalis and Zosterops lateralis) and two island endemics (Acrocephalus aequinoctialis and A. rimitarae) and then comparing the results to those observed in closely-related mainland counterparts. The prevalence of blood parasites was significantly lower in 3 of 4 island taxa, due in part to the absence of certain parasite lineages represented in mainland populations. Indices of genetic diversity were unchanged in the island population of N. temporalis; however, allelic richness was significantly lower in the island population of Z. lateralis while both allelic richness and heterozygosity were significantly reduced in the two island-endemic species examined. Although parasite prevalence and genetic diversity generally conformed to expectations for an island system, we did not find evidence for a pattern of uniformly altered immune responses in island taxa, even amongst endemic taxa with the longest residence times. The island population of Z. lateralis exhibited a significantly reduced inflammatory cell-mediated response while levels of natural antibodies remained unchanged for this and the other recently introduced island taxon. In contrast, the island endemic A. rimitarae exhibited a significantly increased inflammatory response as well as higher levels of natural antibodies and complement. These measures were unchanged or lower in A. aequinoctialis. We suggest that small differences in the pathogenic landscape and the stochastic history of mutation and genetic drift are likely to be important in shaping the unique immunological profiles of small isolated populations. Consequently, predicting the impact of introduced disease on the many other endemic faunas of the remote Pacific will remain a challenge

    Excretion patterns of coccidian oocysts and nematode eggs during the reproductive season in Northern Bald Ibis (Geronticus eremita)

    Get PDF
    Individual reproductive success largely depends on the ability to optimize behaviour, immune function and the physiological stress response. We have investigated correlations between behaviour, faecal steroid metabolites, immune parameters, parasite excretion patterns and reproductive output in a critically endangered avian species, the Northern Bald Ibis (Geronticus eremita). In particular, we related haematocrit, heterophil/lymphocyte ratio, excreted immune-reactive corticosterone metabolites and social behaviour with parasite excretion and two individual fitness parameters, namely, number of eggs laid and number of fledglings. We found that the frequency of excretion of parasites’ oocysts and eggs tended to increase with ambient temperature. Paired individuals excreted significantly more samples containing nematode eggs than unpaired ones. The excretion of nematode eggs was also significantly more frequent in females than in males. Individuals with a high proportion of droppings containing coccidian oocysts were more often preened by their partners than individuals with lower excretion rates. We observed that the more eggs an individual incubated and the fewer offspring fledged, the higher the rates of excreted samples containing coccidian oocysts. Our results confirm that social behaviour, physiology and parasite burden are linked in a complex and context-dependent manner. They also contribute background information supporting future conservation programmes dealing with this critically endangered species

    Development and Validation of Image-Based Deep Learning Models to Predict Surgical Complexity and Complications in Abdominal Wall Reconstruction

    No full text
    IMPORTANCE: Image-based deep learning models (DLMs) have been used in other disciplines, but this method has yet to be used to predict surgical outcomes. OBJECTIVE: To apply image-based deep learning to predict complexity, defined as need for component separation, and pulmonary and wound complications after abdominal wall reconstruction (AWR). DESIGN, SETTING, AND PARTICIPANTS: This quality improvement study was performed at an 874-bed hospital and tertiary hernia referral center from September 2019 to January 2020. A prospective database was queried for patients with ventral hernias who underwent open AWR by experienced surgeons and had preoperative computed tomography images containing the entire hernia defect. An 8-layer convolutional neural network was generated to analyze image characteristics. Images were batched into training (approximately?80%) or test sets (approximately?20%) to analyze model output. Test sets were blinded from the convolutional neural network until training was completed. For the surgical complexity model, a separate validation set of computed tomography images was evaluated by a blinded panel of 6 expert AWR surgeons and the surgical complexity DLM. Analysis started February 2020. EXPOSURES: Image-based DLM. MAIN OUTCOMES AND MEASURES: The primary outcome was model performance as measured by area under the curve in the receiver operating curve (ROC) calculated for each model; accuracy with accompanying sensitivity and specificity were also calculated. Measures were DLM prediction of surgical complexity using need for component separation techniques as a surrogate and prediction of postoperative surgical site infection and pulmonary failure. The DLM for predicting surgical complexity was compared against the prediction of 6 expert AWR surgeons. RESULTS: A total of 369 patients and 9303 computed tomography images were used. The mean (SD) age of patients was 57.9 (12.6) years, 232 (62.9%) were female, and 323 (87.5%) were White. The surgical complexity DLM performed well (ROC?=?0.744; P?<?.001) and, when compared with surgeon prediction on the validation set, performed better with an accuracy of 81.3% compared with 65.0% (P?<?.001). Surgical site infection was predicted successfully with an ROC of 0.898 (P?<?.001). However, the DLM for predicting pulmonary failure was less effective with an ROC of 0.545 (P?=?.03). CONCLUSIONS AND RELEVANCE: Image-based DLM using routine, preoperative computed tomography images was successful in predicting surgical complexity and more accurate than expert surgeon judgment. An additional DLM accurately predicted the development of surgical site infection.RD&E staff can access the full-text of this article by clicking on the 'Additional Link' above and logging in with NHS OpenAthens if prompted.Published versio
    corecore