33 research outputs found

    Evidence for cospatial optical and radio polarized emission in active galactic nuclei

    Get PDF
    We investigate the relationship between the optical and radio emission of active galactic nuclei (AGN) by analysing optical and 15+22+43 GHz Very Long Baseline Array (VLBA) polarization observations simultaneous to within a day for 11 BL Lacertae (BL Lac) objects and the blazar 3C279. We have determined and corrected for the Faraday rotation measures in the very long baseline interferometry (VLBI) cores, enabling us to compare the intrinsic (zero-wavelength) VLBI-core polarization angles and the optical polarization angles chi(opt). A clear alignment between these two angles emerges in the transition toward higher radio frequencies, and a prominent peak at 0 degrees is visible in the distribution of |chi(opt) - chi(43 GHz)|. This correlation implies that the magnetic-field orientations in the regions giving rise to the optical and radio polarization are the same, and can be easily understood if the radio and optical polarization are roughly cospatial. It is difficult to rule out the possibility that they arise in different regions in a straight jet with a uniform magnetic-field structure, but this seems less likely, since the VLBI jets of AGN are often bent on parsec-scales. This may suggest that much or all of the strong optical polarization in these sources arises in the inner radio jets, possibly associated with the formation and emergence of compact new VLBI components

    The 15-43 GHz parsec-scale circular polarization of 41 active galactic nuclei

    Get PDF
    We present the results of parsec-scale circular-polarization measurements based on Very Long Baseline Array data for a number of radio-bright, core-dominated active galactic nuclei obtained simultaneously at 15, 22 and 43 GHz. The degrees of circular polarization m(c) for the Very Long Baseline Interferometry (VLBI) core region at 15 GHz are similar to the values reported earlier at this wavelength, with typical values of a few tenths of a per cent. We find that mc as often rises as falls with increasing frequency between 15 and 22 GHz, while the degree of circular polarization at 43 GHz is in all cases higher than at 22 and 15 GHz. This behaviour seems contrary to expectations, since the degree of circular polarization from both synchrotron radiation and the Faraday conversion of linear to circular polarization - the two main mechanisms considered thus far in the literature - should decrease towards higher frequencies if the source is homogeneous. The increase in mc at 43 GHz may be due to the presence of regions of both positive and negative circular polarization with different frequency dependences ( but decreasing with increasing frequency) on small scales within the core region; alternatively, it may be associated with the intrinsic inhomogeneity of a Blandford-Konigl like jet. In several objects, the detected circular polarization appears to be near, but not coincident with, the core, although further observations are needed to confirm this. We find several cases of changes in sign with frequency, most often between 22 and 43 GHz. We find tentative evidence for transverse structure in the circular polarization of 1055+018 and 1334-127, that is consistent with their being generated by either the synchrotron mechanism or the Faraday conversion in a helical magnetic field. Our results confirm the earlier finding that the sign of the circular polarization at a given observing frequency is generally consistent across epochs separated by several years or more, suggesting stability of the magnetic-field orientation in the innermost jets

    Multi-frequency VLBA study of the blazar S5 0716+714 during the active state in 2004: I. Inner jet kinematics

    Full text link
    We observed the blazar \object{0716+714} with the VLBA during its active state in 2003-2004. In this paper we discuss multi-frequency analysis of the inner jet (first 1 mas) kinematics. The unprecedentedly dense time sampling allows us to trace jet components without misidentification and to calculate the component speeds with good accuracy. In the smooth superluminal jet we were able to identify and track three components over time moving outwards with relatively high apparent superluminal speeds (8.5-19.4 cc), which contradicts the hypothesis of a stationary oscillating jet in this source. Component ejections occur at a relatively high rate (once in two months), and they are accompanied by mm-continuum outbursts. Superluminal jet components move along wiggling trajectories, which is an indication of actual helical motion. Fast proper motion and rapid decay of the components suggest that this source should be observed with the VLBI at a rate of at least once in one or two months in order to trace superluminal jet components without confusion.Comment: 4 pages, 3 figures, Astronomy & Astrophysics Letter, language corrections adde

    Multifrequency VLBA study of the blazar S5 0716+714 during the active state in 2004 II. Large-scale jet kinematics and the comparison of the different methods of VLBI data imaging as applied to kinematic studies of AGN

    Full text link
    We study the jet kinematics of the blazar S5 0716+714 during its active state in 2003-2004 with multi-epoch VLBI observations. Aims. We present a kinematic analysis of the large-scale (0-12 mas) jet of 0716+714, based on the results of six epochs of VLBA monitoring at 5 GHz. Additionally, we compare kinematic results obtained with two imaging methods based on different deconvolution algorithms. The blazar 0716+714 has a diffuse large-scale jet and a very faint bright compact core. Experiments with simulated data showed that the conventional data reduction procedure based on the CLEAN deconvolution algorithm does not perform well in restoring this type of structure. This might be the reason why previous kinematic studies of this source yielded ambiguous results. In order to obtain accurate kinematics of this source, we independently applied two imaging techniques to the raw data: the conventional method, based on difference mapping, which uses CLEAN deconvolution, and the generalized maximum entropy method (GMEM) realized in the VLBImager package developed at the Pulkovo Observatory in Russia. The results of both methods give us a consistent kinematic scenario: the large-scale jet of 0716+714 is diffuse and stationary. Differences between the inner (0-1 mas) and outer (1-12 mas) regions of the jet in brightness and velocity of the components could be explained by the bending of the jet, which causes the angle between the jet direction and the line of sight to change from ~5 deg to ~11 deg. For the source 0716+714 both methods worked at the limit of their capability.Comment: 13 pages, 7 figures. Accepted for publication in A&A, 201

    A multi-wavelength polarimetric study of the blazar CTA 102 during a Gamma-ray flare in 2012

    Full text link
    We perform a multi-wavelength polarimetric study of the quasar CTA 102 during an extraordinarily bright γ\gamma-ray outburst detected by the {\it Fermi} Large Area Telescope in September-October 2012 when the source reached a flux of F>100 MeV=5.2±0.4×106_{>100~\mathrm{MeV}} =5.2\pm0.4\times10^{-6} photons cm2^{-2} s1^{-1}. At the same time the source displayed an unprecedented optical and NIR outburst. We study the evolution of the parsec scale jet with ultra-high angular resolution through a sequence of 80 total and polarized intensity Very Long Baseline Array images at 43 GHz, covering the observing period from June 2007 to June 2014. We find that the γ\gamma-ray outburst is coincident with flares at all the other frequencies and is related to the passage of a new superluminal knot through the radio core. The powerful γ\gamma-ray emission is associated with a change in direction of the jet, which became oriented more closely to our line of sight (θ\theta\sim1.2^{\circ}) during the ejection of the knot and the γ\gamma-ray outburst. During the flare, the optical polarized emission displays intra-day variability and a clear clockwise rotation of EVPAs, which we associate with the path followed by the knot as it moves along helical magnetic field lines, although a random walk of the EVPA caused by a turbulent magnetic field cannot be ruled out. We locate the γ\gamma-ray outburst a short distance downstream of the radio core, parsecs from the black hole. This suggests that synchrotron self-Compton scattering of near-infrared to ultraviolet photons is the probable mechanism for the γ\gamma-ray production.Comment: Accepted for publication in The Astrophysical Journa

    Multiwavelength Intraday Variability of the BL Lac S5 0716+714

    Full text link
    We report results from a 1 week multi-wavelength campaign to monitor the BL Lac object S5 0716+714 (on December 9-16, 2009). In the radio bands the source shows rapid (~ (0.5-1.5) day) intra-day variability with peak amplitudes of up to ~ 10 %. The variability at 2.8 cm leads by about 1 day the variability at 6 cm and 11 cm. This time lag and more rapid variations suggests an intrinsic contribution to the source's intraday variability at 2.8 cm, while at 6 cm and 11 cm interstellar scintillation (ISS) seems to predominate. Large and quasi-sinusoidal variations of ~ 0.8 mag were detected in the V, R and I-bands. The X-ray data (0.2-10 keV) do not reveal significant variability on a 4 day time scale, favoring reprocessed inverse-Compton over synchrotron radiation in this band. The characteristic variability time scales in radio and optical bands are similar. A quasi-periodic variation (QPO) of 0.9 - 1.1 days in the optical data may be present, but if so it is marginal and limited to 2.2 cycles. Cross-correlations between radio and optical are discussed. The lack of a strong radio-optical correlation indicates different physical causes of variability (ISS at long radio wavelengths, source intrinsic origin in the optical), and is consistent with a high jet opacity and a compact synchrotron component peaking at ~= 100 GHz in an ongoing very prominent flux density outburst. For the campaign period, we construct a quasi-simultaneous spectral energy distribution (SED), including gamma-ray data from the FERMI satellite. We obtain lower limits for the relativistic Doppler-boosting of delta >= 12-26, which for a BL\,Lac type object, is remarkably high.Comment: 16 pages, 15 figures, table 2; Accepted for Publication in MNRA

    VizieR Online Data Catalog: 1Jy northern AGN sample (Planck+, 2016)

    Get PDF
    The complete sample presented in this paper consists of 104 northern and equatorial radio-loud AGN. It includes all AGN with declination >=-10° that have a measured average radio flux density at 37GHz exceeding 1Jy. Most of the sample sources have been monitored at Metsahovi Radio Observatory for many years, and the brightest sources have been observed for up to 30yr. (1 data file)

    Insights into the emission of the blazar 1ES 1011+496 through unprecedented broadband observations during 2011 and 2012

    Get PDF
    Context. 1ES 1011+496 (z = 0.212) was discovered in very high-energy (VHE, E > 100 GeV) gamma rays with MAGIC in 2007. The absence of simultaneous data at lower energies led to an incomplete characterization of the broadband spectral energy distribution (SED). Aims. We study the source properties and the emission mechanisms, probing whether a simple one-zone synchrotron self-Compton (SSC) scenario is able to explain the observed broadband spectrum.Methods. We analyzed data in the range from VHE to radio data from 2011 and 2012 collected by MAGIC, Fermi-LAT, Swift, KVA, OVRO, and Metsahovi in addition to optical polarimetry data and radio maps from the Liverpool Telescope and MOJAVE.Results. The VHE spectrum was fit with a simple power law with a photon index of 3.69 +/- 0.22 and a flux above 150 GeV of (1.46 +/- 0.16) x 10(-11) ph cm(-2) s(-1). The source 1ES 1011+496 was found to be in a generally quiescent state at all observed wavelengths, showing only moderate variability from radio to X-rays. A low degree of polarization of less than 10% was measured in optical, while some bright features polarized up to 60% were observed in the radio jet. A similar trend in the rotation of the electric vector position angle was found in optical and radio. The radio maps indicated a superluminal motion of 1.8 +/- 0.4 c, which is the highest speed statistically significant measured so far in a high-frequency-peaked BL Lac.Conclusions. For the first time, the high-energy bump in the broadband SED of 1ES 1011+496 could be fully characterized from 0.1 GeV to 1 TeV, which permitted a more reliable interpretation within the one-zone SSC scenario. The polarimetry data suggest that at least part of the optical emission has its origin in some of the bright radio features, while the low polarization in optical might be due to the contribution of parts of the radio jet with different orientations of the magnetic field with respect to the optical emission

    Insights into the emission of the blazar 1ES 1011+496 through unprecedented broadband observations during 2011 and 2012

    Get PDF
    Context. 1ES 1011+496 (z = 0.212) was discovered in very high-energy (VHE, E> 100 GeV) γ rays with MAGIC in 2007. The absence of simultaneous data at lower energies led to an incomplete characterization of the broadband spectral energy distribution (SED). Aims. We study the source properties and the emission mechanisms, probing whether a simple one-zone synchrotron self-Compton (SSC) scenario is able to explain the observed broadband spectrum. Methods. We analyzed data in the range from VHE to radio data from 2011 and 2012 collected by MAGIC, Fermi-LAT, Swift, KVA, OVRO, and Metsähovi in addition to optical polarimetry data and radio maps from the Liverpool Telescope and MOJAVE. Results. The VHE spectrum was fit with a simple power law with a photon index of 3.69 ± 0.22 and a flux above 150 GeV of (1.46 ± 0.16) × 10-11 ph cm-2 s-1. The source 1ES 1011+496 was found to be in a generally quiescent state at all observed wavelengths, showing only moderate variability from radio to X-rays. A low degree of polarization of less than 10% was measured in optical, while some bright features polarized up to 60% were observed in the radio jet. A similar trend in the rotation of the electric vector position angle was found in optical and radio. The radio maps indicated a superluminal motion of 1.8 ± 0.4 c, which is the highest speed statistically significant measured so far in a high-frequency-peaked BL Lac. Conclusions. For the first time, the high-energy bump in the broadband SED of 1ES 1011+496 could be fully characterized from 0.1 GeV to 1 TeV, which permitted a more reliable interpretation within the one-zone SSC scenario. The polarimetry data suggest that at least part of the optical emission has its origin in some of the bright radio features, while the low polarization in optical might be due to the contribution of parts of the radio jet with different orientations of the magnetic field with respect to the optical emission
    corecore