134 research outputs found

    A randomised phase II study of pegylated arginine deiminase (ADI-PEG 20) in Asian advanced hepatocellular carcinoma patients

    Get PDF
    [[abstract]]Background:Human hepatocellular carcinoma (HCC) cells are largely deficient of argininosuccinate synthetase and thus auxotrophic for arginine. This study aims to investigate the efficacy and pharmacodynamics of pegylated arginine deiminase (ADI-PEG 20), a systemic arginine deprivation agent, in Asian HCC patients. Methods:Patients with advanced HCC who were not candidates for local therapy were eligible and randomly assigned to receive weekly intramuscular injections of ADI-PEG 20 at doses of 160 or 320 IU m-2. The primary end point was disease-control rate (DCR). Results:Of the 71 accruals, 43.6% had failed previous systemic treatment. There were no objective responders. The DCR and the median overall survival (OS) of the intent-to-treat population were 31.0% (95% confidence interval (CI): 20.5-43.1) and 7.3 (95% CI: 4.7-9.9) months respectively. Both efficacy parameters were comparable between the two study arms. The median OS of patients with undetectable circulating arginine for more than or equal to and <4 weeks was 10.0 (95% CI: 2.1-17.9) and 5.8 (95% CI: 1.4-10.1) months respectively (P=0.251, log-rank test). The major treatment-related adverse events were grades 1-2 local and/or allergic reactions. Conclusions:ADI-PEG 20 is safe and efficacious in stabilising the progression of heavily pretreated advanced HCC in an Asian population, and deserves further exploration.British Journal of Cancer advance online publication, 31 August 2010; doi:10.1038/sj.bjc.6605856 www.bjcancer.com

    Cationic Amino Acid Transporters and Salmonella Typhimurium ArgT Collectively Regulate Arginine Availability towards Intracellular Salmonella Growth

    Get PDF
    Cationic amino acid transporters (mCAT1 and mCAT2B) regulate the arginine availability in macrophages. How in the infected cell a pathogen can alter the arginine metabolism of the host remains to be understood. We reveal here a novel mechanism by which Salmonella exploit mCAT1 and mCAT2B to acquire host arginine towards its own intracellular growth within antigen presenting cells. We demonstrate that Salmonella infected bone marrow derived macrophages and dendritic cells show enhanced arginine uptake and increased expression of mCAT1 and mCAT2B. We show that the mCAT1 transporter is in close proximity to Salmonella containing vacuole (SCV) specifically by live intracellular Salmonella in order to access the macrophage cytosolic arginine pool. Further, Lysosome associated membrane protein 1, a marker of SCV, also was found to colocalize with mCAT1 in the Salmonella infected cell. The intra vacuolar Salmonella then acquire the host arginine via its own arginine transporter, ArgT for growth. The argT knockout strain was unable to acquire host arginine and was attenuated in growth in both macrophages and in mice model of infection. Together, these data reveal survival strategies by which virulent Salmonella adapt to the harsh conditions prevailing in the infected host cells

    Disrupted lymph node and splenic stroma in mice with induced inflammatory melanomas is associated with impaired recruitment of T and dendritic cells

    Get PDF
    International audienceMigration of dendritic cells (DC) from the tumor environment to the T cell cortex in tumor-draining lymph nodes (TDLN) is essential for priming naïve T lymphocytes (TL) to tumor antigen (Ag). We used a mouse model of induced melanoma in which similar oncogenic events generate two phenotypically distinct melanomas to study the influence of tumor-associated inflammation on secondary lymphoid organ (SLO) organization. One tumor promotes inflammatory cytokines, leading to mobilization of immature myeloid cells (iMC) to the tumor and SLO; the other does not. We report that inflammatory tumors induced alterations of the stromal cell network of SLO, profoundly altering the distribution of TL and the capacity of skin-derived DC and TL to migrate or home to TDLN. These defects, which did not require tumor invasion, correlated with loss of fibroblastic reticular cells in T cell zones and in impaired production of CCL21. Infiltrating iMC accumulated in the TDLN medulla and the splenic red pulp. We propose that impaired function of the stromal cell network during chronic inflammation induced by some tumors renders spleens non-receptive to TL and TDLN non-receptive to TL and migratory DC, while the entry of iMC into these perturbed SLO is enhanced. This could constitute a mechanism by which inflammatory tumors escape immune control. If our results apply to inflammatory tumors in general, the demonstration that SLO are poorly receptive to CCR7-dependent migration of skin-derived DC and naïve TL may constitute an obstacle for proposed vaccination or adoptive TL therapies of their hosts

    T Cells Contribute to Tumor Progression by Favoring Pro-Tumoral Properties of Intra-Tumoral Myeloid Cells in a Mouse Model for Spontaneous Melanoma

    Get PDF
    Tumors affect myelopoeisis and induce the expansion of myeloid cells with immunosuppressive activity. In the MT/ret model of spontaneous metastatic melanoma, myeloid cells are the most abundant tumor infiltrating hematopoietic population and their proportion is highest in the most aggressive cutaneous metastasis. Our data suggest that the tumor microenvironment favors polarization of myeloid cells into type 2 cells characterized by F4/80 expression, a weak capacity to secrete IL-12 and a high production of arginase. Myeloid cells from tumor and spleen of MT/ret mice inhibit T cell proliferation and IFNγ secretion. Interestingly, T cells play a role in type 2 polarization of myeloid cells. Indeed, intra-tumoral myeloid cells from MT/ret mice lacking T cells are not only less suppressive towards T cells than corresponding cells from wild-type MT/ret mice, but they also inhibit more efficiently melanoma cell proliferation. Thus, our data support the existence of a vicious circle, in which T cells may favor cancer development by establishing an environment that is likely to skew myeloid cell immunity toward a tumor promoting response that, in turn, suppresses immune effector cell functions

    Tyrosine kinase inhibitors reprogramming immunity in renal cell carcinoma: rethinking cancer immunotherapy

    Get PDF
    Review article[Abstract] The immune system regulates angiogenesis in cancer by way of both pro- and antiangiogenic activities. A bidirectional link between angiogenesis and the immune system has been clearly demonstrated. Most antiangiogenic molecules do not inhibit only VEGF signaling pathways but also other pathways which may affect immune system. Understanding of the role of these pathways in the regulation of immunosuppressive mechanisms by way of specific inhibitors is growing. Renal cell carcinoma (RCC) is an immunogenic tumor in which angiogenesis and immunosuppression work hand in hand, and its growth is associated with impaired antitumor immunity. Given the antitumor activity of selected TKIs in metastatic RCC (mRCC), it seems relevant to assess their effect on the immune system. The confirmation that TKIs improve cell cytokine response in mRCC provides a basis for the rational combination and sequential treatment of TKIs and immunotherapy

    Mycobacteria counteract a TLR-mediated nitrosative defense mechanism in a zebrafish infection model.

    Get PDF
    Pulmonary tuberculosis (TB), caused by the intracellular bacterial pathogen Mycobacterium tuberculosis (Mtb), is a major world health problem. The production of reactive nitrogen species (RNS) is a potent cytostatic and cytotoxic defense mechanism against intracellular pathogens. Nevertheless, the protective role of RNS during Mtb infection remains controversial. Here we use an anti-nitrotyrosine antibody as a readout to study nitration output by the zebrafish host during early mycobacterial pathogenesis. We found that recognition of Mycobacterium marinum, a close relative of Mtb, was sufficient to induce a nitrosative defense mechanism in a manner dependent on MyD88, the central adaptor protein in Toll like receptor (TLR) mediated pathogen recognition. However, this host response was attenuated by mycobacteria via a virulence mechanism independent of the well-characterized RD1 virulence locus. Our results indicate a mechanism of pathogenic mycobacteria to circumvent host defense in vivo. Shifting the balance of host-pathogen interactions in favor of the host by targeting this virulence mechanism may help to alleviate the problem of infection with Mtb strains that are resistant to multiple drug treatments

    Cellular Basis of Tissue Regeneration by Omentum

    Get PDF
    The omentum is a sheet-like tissue attached to the greater curvature of the stomach and contains secondary lymphoid organs called milky spots. The omentum has been used for its healing potential for over 100 years by transposing the omental pedicle to injured organs (omental transposition), but the mechanism by which omentum helps the healing process of damaged tissues is not well understood. Omental transposition promotes expansion of pancreatic islets, hepatocytes, embryonic kidney, and neurons. Omental cells (OCs) can be activated by foreign bodies in vivo. Once activated, they become a rich source for growth factors and express pluripotent stem cell markers. Moreover, OCs become engrafted in injured tissues suggesting that they might function as stem cells

    Strategies to Target Tumor Immunosuppression

    Get PDF
    The tumor microenvironment is currently in the spotlight of cancer immunology research as a key factor impacting tumor development and progression. While antigen-specific immune responses play a crucial role in tumor rejection, the tumor hampers these immune responses by creating an immunosuppressive microenvironment. Recently, major progress has been achieved in the field of cancer immunotherapy, and several groundbreaking clinical trials demonstrated the potency of such therapeutic interventions in patients. Yet, the responses greatly vary among individuals. This calls for the rational design of more efficacious cancer immunotherapeutic interventions that take into consideration the “immune signature” of the tumor. Multimodality treatment regimens that aim to enhance intratumoral homing and activation of antigen-specific immune effector cells, while simultaneously targeting tumor immunosuppression, are pivotal for potent antitumor immunity
    corecore