1,339 research outputs found
Maximal Accuracy and Minimal Disturbance in the Arthurs-Kelly Simultaneous Measurement Process
The accuracy of the Arthurs-Kelly model of a simultaneous measurement of
position and momentum is analysed using concepts developed by Braginsky and
Khalili in the context of measurements of a single quantum observable. A
distinction is made between the errors of retrodiction and prediction. It is
shown that the distribution of measured values coincides with the initial state
Husimi function when the retrodictive accuracy is maximised, and that it is
related to the final state anti-Husimi function (the P representation of
quantum optics) when the predictive accuracy is maximised. The disturbance of
the system by the measurement is also discussed. A class of minimally
disturbing measurements is characterised. It is shown that the distribution of
measured values then coincides with one of the smoothed Wigner functions
described by Cartwright.Comment: 12 pages, 0 figures. AMS-Latex. Earlier version replaced with final
published versio
Modeling of Kidney Hemodynamics: Probability-Based Topology of an Arterial Network
Through regulation of the extracellular fluid volume, the kidneys provide important long-term regulation of blood pressure. At the level of the individual functional unit (the nephron), pressure and flow control involves two different mechanisms that both produce oscillations. The nephrons are arranged in a complex branching structure that delivers blood to each nephron and, at the same time, provides a basis for an interaction between adjacent nephrons. The functional consequences of this interaction are not understood, and at present it is not possible to address this question experimentally. We provide experimental data and a new modeling approach to clarify this problem. To resolve details of microvascular structure, we collected 3D data from more than 150 afferent arterioles in an optically cleared rat kidney. Using these results together with published micro-computed tomography (μCT) data we develop an algorithm for generating the renal arterial network. We then introduce a mathematical model describing blood flow dynamics and nephron to nephron interaction in the network. The model includes an implementation of electrical signal propagation along a vascular wall. Simulation results show that the renal arterial architecture plays an important role in maintaining adequate pressure levels and the self-sustained dynamics of nephrons
Process Modules for GeSn Nanoelectronics with high Sn-contents
This paper systematically studies GeSn n-FETs, from individual process modules to a complete device. High-k gate stacks and NiGeSn metallic contacts for source and drain are characterized in independent experiments. To study both direct and indirect bandgap semiconductors, a range of 0 at.% to 14.5 at.% Sn-content GeSn alloys are investigated. Special emphasis is placed on capacitance-voltage (C-V) characteristics and Schottky-barrier optimization. GeSn n-FET devices are presented including temperature dependent I-V characteristics. Finally, as an important step towards implementing GeSn in tunnel-FETs, negative differential resistance in Ge0.87Sn0.13 tunnel-diodes is demonstrated at cryogenic temperatures. The present work provides a base for further optimization of GeSn FETs and novel tunnel FET devices
Time-of-arrival distributions from position-momentum and energy-time joint measurements
The position-momentum quasi-distribution obtained from an Arthurs and Kelly
joint measurement model is used to obtain indirectly an ``operational''
time-of-arrival (TOA) distribution following a quantization procedure proposed
by Kocha\'nski and W\'odkiewicz [Phys. Rev. A 60, 2689 (1999)]. This TOA
distribution is not time covariant. The procedure is generalized by using other
phase-space quasi-distributions, and sufficient conditions are provided for
time covariance that limit the possible phase-space quasi-distributions
essentially to the Wigner function, which, however, provides a non-positive TOA
quasi-distribution. These problems are remedied with a different quantization
procedure which, on the other hand, does not guarantee normalization. Finally
an Arthurs and Kelly measurement model for TOA and energy (valid also for
arbitrary conjugate variables when one of the variables is bounded from below)
is worked out. The marginal TOA distribution so obtained, a distorted version
of Kijowski's distribution, is time covariant, positive, and normalized
The IFN-γ-Inducible GTPase, Irga6, Protects Mice against Toxoplasma gondii but Not against Plasmodium berghei and Some Other Intracellular Pathogens
Clearance of infection with intracellular pathogens in mice involves interferon-regulated GTPases of the IRG protein family. Experiments with mice genetically deficient in members of this family such as Irgm1(LRG-47), Irgm3(IGTP), and Irgd(IRG-47) has revealed a critical role in microbial clearance, especially for Toxoplasma gondii. The in vivo role of another member of this family, Irga6 (IIGP, IIGP1) has been studied in less detail. We investigated the susceptibility of two independently generated mouse strains deficient in Irga6 to in vivo infection with T. gondii, Mycobacterium tuberculosis, Leishmania mexicana, L. major, Listeria monocytogenes, Anaplasma phagocytophilum and Plasmodium berghei. Compared with wild-type mice, mice deficient in Irga6 showed increased susceptibility to oral and intraperitoneal infection with T. gondii but not to infection with the other organisms. Surprisingly, infection of Irga6-deficient mice with the related apicomplexan parasite, P. berghei, did not result in increased replication in the liver stage and no Irga6 (or any other IRG protein) was detected at the parasitophorous vacuole membrane in IFN-γ-induced wild-type cells infected with P. berghei in vitro. Susceptibility to infection with T. gondii was associated with increased mortality and reduced time to death, increased numbers of inflammatory foci in the brains and elevated parasite loads in brains of infected Irga6-deficient mice. In vitro, Irga6-deficient macrophages and fibroblasts stimulated with IFN-γ were defective in controlling parasite replication. Taken together, our results implicate Irga6 in the control of infection with T. gondii and further highlight the importance of the IRG system for resistance to this pathogen
Sosa on Knowledge, Judgment and Guessing
In Chapter 3 of Judgment and Agency, Sosa (Judgment and Agency, 2015) explicates the concept of a fully apt performance. In the course of doing so, he draws from illustrative examples of practical performances and applies lessons drawn to the case of cognitive performances, and in particular, to the cognitive performance of judging. Sosa’s examples in the practical sphere are rich and instructive. But there is, I will argue, an interesting disanalogy between the practical and cognitive examples he relies on. Ultimately, I think the source of the disanalogy is a problematic picture of the cognitive performance of guessing and its connection to knowledge and defeat. Once this critical line of argument is advanced, an alternative picture of guessing, qua cognitive performance, is articulated, one which avoids the problems discussed, and yet remains compatible with Sosa’s broader framework
- …