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Abstract
Through regulation of the extracellular fluid volume, the kidneys provide important long-

term regulation of blood pressure. At the level of the individual functional unit (the nephron),

pressure and flow control involves two different mechanisms that both produce oscillations.

The nephrons are arranged in a complex branching structure that delivers blood to each

nephron and, at the same time, provides a basis for an interaction between adjacent neph-

rons. The functional consequences of this interaction are not understood, and at present it

is not possible to address this question experimentally. We provide experimental data and a

new modeling approach to clarify this problem. To resolve details of microvascular struc-

ture, we collected 3D data from more than 150 afferent arterioles in an optically cleared rat

kidney. Using these results together with published micro-computed tomography (μCT)

data we develop an algorithm for generating the renal arterial network. We then introduce a

mathematical model describing blood flow dynamics and nephron to nephron interaction in

the network. The model includes an implementation of electrical signal propagation along a

vascular wall. Simulation results show that the renal arterial architecture plays an important

role in maintaining adequate pressure levels and the self-sustained dynamics of nephrons.

Author Summary

By maintaining the volume and composition of the body fluids within narrow ranges, and
by producing a set of hormones that affect the blood vessels, the kidneys provide impor-
tant long-term regulation of blood pressure. Disturbances of kidney function can cause
hypertension, a prevalent disease in modern societies. The kidneys protect their own func-
tion against short-term variations in blood pressure at the level of the individual unit (the
nephron). In recent years, it has become clear that there is an interaction between neph-
rons, and that this interaction is mediated through the arterial network of the kidney. The
renal vacular network has a complex topology, and at present there are no computational
models of this topology, precluding a computational assessment of the consequences of
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nephron-nephron interactions for renal blood flow control. In this work we focus on
understanding how kidney specific vascular structure affects blood flow patterns and
nephron-to-nephron interaction in kidney. The paper presents an approach to construct-
ing realistic models of the renal vascular architecture. We developed a computational
approach to reproduce the architecture and to examine its consequences for the operating
regime of the nephrons.

Introduction
An important feature of the vascular system is its highly branched structure. It is assumed that
the branching geometry of blood vessels is governed by defined principles [1–3]. Tree-like
structures of arterial systems have been a subject of experimental and theoretical studies related
to vascular topology and flow [4–6]. Structural connectivity in vascular networks directly influ-
ences their functional state, defining how much oxygen and nutrients are delivered to different
regions of the organism. The network experiences local responses affecting the local blood flow
and altering the overall state of the network [7–9]. The topology of the vascular network is also
an important determinant of the consequences of pathological processes in the vessels [10].

Nephrons are arranged in a complex branching structure, the nephro-arterial network, that
delivers blood to each nephron and, at the same time, provides the basis for an interaction
between each nephron and neighboring ones. The interaction between nephrons across the
arterial network results in complex spatial patterns of synchronization between tubular pres-
sure oscillations of the individual nephrons. This was demonstrated in several recent studies
employing measurements of renal cortical blood flow using laser speckle flowmetry [11–14].
At present, both the functional significance of spatial patterns and the mechanisms leading to
their formation are unknown.

An important step in the investigation of the mechanisms and the functional significance of
the spatial synchronization of cortical blood flow is a better understanding of the topology of
the renal circulation. This requires a detailed mapping of the entire renal vascular tree, a task
that has become feasible due to the development of micro-computed tomography (μCT) [15]
and optical clearance methods [16, 17]. Such data provide a statistical basis from which compu-
tational models of the renal circulation can be generated.

Two main features of the nephron-vascular network are (i) a significant pressure drop
between the origin of an afferent arteriole and its insertion into the glomerulus, and (ii) the
presence of the tubulo-glomerular feedback mechanism. Experimental results [18, 19] show
that neighboring nephrons adjust their TGF-mediated tubular pressure oscillations to attain a
synchronized regime.Neighboring nephrons interact by vascular propagation of electrical sig-
nals, initiated by the TGF of each nephron, which travel via endothelial cells in the arteriolar
wall and can reach (the branch point with) the neighboring afferent arteriole. This coupling
tends to produce simultaneous constriction of the afferent arterioles leading to in-phase syn-
chronization of the oscillations. Another type of interaction, hemodynamic coupling, occurs
due to the topology of the renal vasculature. Sharing of blood flow at each branch point of the
arterial tree provides an interdependence of the local perfusion pressures, and, hence, affects
the hemodynamics of all nephrons located downstream of the branch point. Due to a signifi-
cant time lag in the system, this type of interaction can lead to anti-phase synchronization
betweeen nephrons. Depending on the precise topology of the arteriolar network the first of
these mechanisms may be more important for the local coupling of nephrons, with the other
mechanism more important for global coupling.
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Several recent modeling studies have investigated features of nephron-nephron interactions
[20–22]. The complex renal arterial network in these studies was approximated by a simple
bifurcating tree-like structure and included a group of 10–20 nephrons. Postnov et al. [20]
showed that such a topology induces desynchronization between originally identical nephron
models (coupling-induced inhomogeneity). Marsh et al. [21] demonstrated the presence of
steady state, quasiperiodic and chaotic dynamics in an ensemble of cortical and medullary
nephrons depending on the interaction strengths and the arterial blood pressure. Bayram et al.
[22] suggested that several nephrons originating from the same small artery are more likely to
be in an oscillatory state than a single nephron will. We recently demonstrated [23] that (i)
neighboring nephrons at the same branch level were synchronized in-phase due to the vascular
propagated electrical coupling, (ii) nephrons separated by one branch point tended to display a
phase-shifted pattern due to hemodynamic coupling, and (iii) distantly located groups of neph-
rons showed asynchronous behavior. Marsh et al. [24] introduced heterogeneity into the
nephro-arterial network, and observed similar dynamical patterns.

However, all of the studies cited used an overly simplified representation of the renal arterial
network, and it is not clear to what extent the observed dynamics might be a consequence of
the simplification. Further progress requires the use of more realistic models of the renal arte-
rial network. In this study we focus on understanding how renal arterial structure affects blood
flow dynamics. To address this question: (i) we perform experiments using optical tissue clear-
ance to resolve details of microvascular structure not previously available; (ii) we develop an
algorithm for generating a realistic model of the renal arterial network using the data obtained
from our experiments and from micro-computed tomography study by Nordsletten et al [15];
(iii) we present a mathematical model that describes blood flow dynamics and nephron to
nephron interaction in the renal nephro-arterial network including a new implementation of
electrical signal propagation along a vascular wall; and (iv) we simulate how renal specific vas-
cular structure can affect renal blood flow patterns and nephron-to-nephron interactions.

Model

Algorithm for the vascular structure
We suggest a general algorithm to create an asymmetrical bifurcating tree based on experimen-
tal data, with modifications that are specific for the renal microcirculation:

• An asymmetric bifurcating tree (ABT) with a gradual decrease of diameter, and with afferent
arterioles present only at the end of the tree;

• A kidney specific asymmetric bifurcating tree (KSABT) with a fraction of afferent arterioles
branching directly from larger vessels.

In both cases the structure of the vascular networks is simulated using a probability-based
bifurcating algorithm together with Murray’s law [1]. Main features and assumptions of the
suggested algorithm are described below:

1. Simulations start from a vessel with the initial diameter Dinitial.

2. A vessel always bifurcates into two daughter vessels;

3. For a daughter vessel the distribution of its diameter is a function of the parent vessel diameter;

4. The diameter of the second branching daughter vessel is calculated according to Murray’s law

[1], i.e.Dd2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D3

p � D3
d1

3

q
, where Dp,Dd1,Dd2 denote diameters of the parent vessel, the first

and second daughter vessels, respectively (see algorithm visualization in Fig 1, top panel);
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5. The distribution of vessel lengths is a function of the vessel diameter;

6. Vessels bifurcate until they reach a given diameter (parameter Dstop). Vessels with a diame-
ter less than Dstop are counted as afferent arterioles;

7. (Only for KSABT). Additional afferent arterioles are distributed over the whole vascular
tree and appear with a probability according to the distribution of distances between neigh-
boring afferent arterioles. We use a segmentation algorithm for this step. (Fig 1, bottom
panel). Murray’s law is still applied at each branch point;

8. (Only for KSABT). If the first vessel is the renal artery, it is not segmented and can not have
afferent arterioles. Otherwise segmentation is applied.

A more detailed description can be found in Materials and Methods.

Fig 1. Bifurcation algorithms. Top panel: Main steps of the recursive bifurcating algorithm to create an ABT. Starting with a vessel of a
certain diameter, (a) determine the vessel length in accordance with its diameter; (b) estimate diameters and lengths of daughter vessels;
(c) apply (b) to the first daughter vessel and continue recursively until Dstop is reached; (d) apply (b) to the last “unprocessed” daughter
vessel; (e) apply (b), (c), and (d) until the whole tree is built. Bottom panel: Additional segmentation for kidney specific structure KSABT.
(A) Determine initial diameter and length of the vessel; (B) Grow afferent arterioles (instead of daughter vessels); this is accompanied by
the diameter reduction of the initial vessel in accordance with Murray’s law; (C) after the entire length of the vessel is processed, estimate
the diameter of daughter vessels based on the new (reduced) diameter of the current vessel. Except segmentation, other steps of creating
KSABT are the same as of ABT. Detailed description of the algorithm can be found in Materials and Methods.

doi:10.1371/journal.pcbi.1004922.g001
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Statistical data on network topology
The available data were collected by means of μCT with 20-μm and 4-μm resolution and pub-
lished by Nordsletten et al. [15]. For the distribution of daughter vessel diameters as a function
of the parent vessel diameter we use a cubic approximation for mean values and a linear approx-
imation for standard deviations (Fig 2, left panel). For simplicity, it is assumed that branch level
corresponds to a Strahler order. For a given parent vessel diameter, we use the cubic approxima-
tion to find the mean and standard deviation for the distribution of daughter vessel diameters.
The diameter for the first daughter vessel is then drawn at random from this distribution. The
diameter of the second daughter vessel is calculated so that it complies with Murray’s law. For
the length distribution as a function of the vessel diameter, a linear approximation is used for
both mean and standard deviations for the best fit in the range of [20;100] μm (Fig 2, right
panel). Based on these approximations we build a vascular tree with gradually decreasing diame-
ter and with afferent arterioles located only at the end of the tree (ABT). Nordsletten et al. found
only a small deviation (�1%) between a regression analysis performed on all daughter-parent
diameter relationships and Murray’s law [15], a finding that justifies our use of it. Accordingly,
we designed our algorithm to ensure that the vascular tree it generates also follows Murray’s
law. Because vessel diameters at a bifurcation fulfill Murray’s law, they are not statistically inde-
pendent. This reflects the fact that knowing the diameters of two of the three vessels in a bifurca-
tion, the diameter of the last vessel can be calculated fromMurray’s law. It should also be noted
that the assumption that Strahler order corresponds to branching order may introduce some
errors. Two daughter vessels need not have the same Strahler order, as this depends on the num-
ber of bifurcations that occur downstream from the respective daughter vessels [25–27]. Thus,
the Strahler ordering scheme categorizes the vessels starting from the smallest vessels going
upstream to the larger vessels. In principle it is therefore not possible to assign a Strahler order
to a given vessel before the downstream branching process has come to an end. Since our algo-
rithm “works” from the larger vessels towards the smaller ones, the Strahler ordering scheme is
incompatible with the bifurcating algorithm, since it, in a sense, only can be applied retrospec-
tively. However, the effect of this is expected only to be of minor significance.

The data obtained by μCT provide important information about the dimensions of the
larger renal vessels. However, due to the limited spatial resolution, important information on

Fig 2. Distributions based on the data published byNordsletten et al. [15] (red) and their approximations (blue). Left panel: Daughter
vessel diameter as a function of the parent vessel diameter. Right panel: Vessel length as a function of the vessel diameter.

doi:10.1371/journal.pcbi.1004922.g002
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afferent arterioles is missing. Different studies show that (i) afferent arterioles (AA) can branch
not only from small vessels, but also from larger arteries [28, 29] and (ii) two, three, or four
afferent arterioles can originate together from a single site on an artery [30]. These features
make the renal vascular structure significantly different from the vascular structure of other
organs [31, 32].

We assume that the distances between the origins of AAs on the vascular tree can be
described by an exponential distribution. This assumption is based on several observations:

1. AAs often originate in doublets or triplets even from large vessels. This implies a high prob-
ability of zero or close to zero distances between neighboring AAs;

2. Vessel segments without AAs branching from them are rarely seen. This implies a low prob-
ability for distances between AAs of several hundreds of microns.

The simplest possible distribution that satisfies observations 1 and 2 is an exponential distri-
bution. Finally, we assumed that the distribution of the distance between neighboring AAs is
independent of the diameter of the feeding vessel.

To provide experimental support for using an exponential distribution for the distances
between the origins of afferent arterioles, we performed experimental studies to visualize renal
vascular architecture using confocal microscopic imaging of chemically cleared renal tissue
(see details in Materials and Methods) [16, 17]. We obtained two 3D stacks of renal vascular
structure, from which we measured the distances between the origins of neighboring AAs. An
example of the observed structures is shown in Fig 3, right panel. The data set contains

Fig 3. Left panel: Measurements of the distance between neighboring AAs based on the data from cleared renal tissue (blue) and the exponential
approximation (red). Experimental data are normalized to the area under the distribution. Right panel: Reconstructed image shows a stack of renal
vessels. Afferent arterioles branch from large vessels that continue their branching (glomeruli are depicted in red color). The dimensions of the stack are
850 x 850 x 211 μm. Axis labels show the original coordinates in μm, but note that the tissue shrinks� 20% in each direction during the optical clearing
procedure (see Material and Methods). A correction factor for tissue shrinkage was included into the measurements in the left panel.

doi:10.1371/journal.pcbi.1004922.g003
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information on distances between origins of more than 150 afferent arterioles branching from
the feeding vessels with diameters of 25–100 μm. An exponential function (red) provides a
good fit to the data (blue) (Fig 3, left panel). The exponential distribution is used to generate a
vascular tree specific to the kidney (KSABT) where afferent arterioles may branch off any vessel
on the arterial structure.

Using the algorithm described above and the statistical data on renal vascular morphology,
a renal vascular structure is generated in the form of a connectivity matrix that maps the con-
nections between vessels as well as the vessel length and diameter. The matrix is used as the
input for full-scale computer simulations.

Hemodynamic interaction
A hemodynamic interaction occurs when one nephron is stimulated by its TGF-mechanism to
contract its afferent arteriole, causing the hydrostatic pressure to rise at the upstream branch
node, increasing the blood flow to the second nephron. Half a period later when the increased
blood flow activates the TGF-mechanism in the second nephron and causes its afferent arteri-
ole to contract, the blood flow to this nephron is reduced, and the blood flow to the first neph-
ron increases. Due to the time lag in the response, this type of interaction tends to induce anti-
phase synchronization between nephrons.

To describe the flow in each vessel of the vascular tree, one needs the hemodynamic resis-
tance Rhdr calculated from the Poiseuille relationship:

Rhdr ¼
128ZL
pD4

: ð1Þ

Here L is the length of the vessel, η is the viscosity of blood. The viscosity depends on vessel
diameter, and we adopt the expression for viscosity from Ref. [33], assuming an invariant
hematocrit of 0.45:

Z ¼ 1þ 6exp �0:085Dð Þ þ 2:2� 2:44exp �0:06D0:645ð Þð Þ D
D� 1:1

� �2
 !

D
D� 1:1

� �2

; ð2Þ

where η is in units of centipose and D is the inner diameter of the vessel in micrometers.
The pressure variation in each node, derived from expressions for conservation of flow in

each node (Fig 4), is given by:

afferent : Chdr

dPj

dt
¼

Ppnj
� Pj

Rhdrvj

� Fnephj
; ð3Þ

other : Chdr

dPj

dt
¼

Ppnj
� Pj

Rhdrvj

�
Pj � Pdn1j

Rhdrdv1j

�
Pj � Pdn2j

Rhdrdv2j

: ð4Þ

Here Chdr is the vessel compliance. Ppnj, Pdn1j, Pdn2j, and Pj denote pressure in the parent node,
the first daughter node, the second daughter node, and the current node, respectively. Rhdrvj,
Rhdrdv1j, and Rhdrdv2j are the hemodynamic resistance of the current vessel, the first daughter ves-
sel and the second daughter vessel, respectively. Pressure in the root of the tree and blood flow
to the nephrons Fnephj serve as boundary conditions, where Fnephj is calculated for each nephron
as the difference between the pressure in the node giving rise to the afferent arteriole and the
glomerular capillary pressure divided by the hemodynamic resistance of the afferent arteriole.
The hemodynamic resistance is determined from the nephron model (Eq (16).
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Electrical interaction
Activation of TGF in one nephron causes membrane depolarization and contraction of the vas-
cular smooth muscle cells of the corresponding afferent arteriole. Because the cells of the renal
vessels are coupled electrically by gap junctions [34], the membrane depolarization spreads,
through electrotonic conduction, into the vascular smooth cells of the neighboring AAs caus-
ing them to contract [35]. Thus, the cells of the renal vasculature constitute a well-coupled syn-
cytium in which the endothelial cells form the path of least resistance [36]. The deflection in
the membrane potential generated by themacula densa decays exponentially with the distance
between the site of contact between themacula densa and the AA [35, 37]. The electrotonic
spread between the vascular cells is fast, and it acts to adjust the TGF-mediated tubular pres-
sure oscillations to attain a state of in-phase synchronization [18]. Fig 5 shows a schematic
representation of the electrical coupling.

Fig 4. A fragment of the vascular structure. pn, dn1, dn2 and j denote the parent node, the first daughter
node, the second daughter node, and the current node, respectively. Each vessel has its own hemodynamic
resistance.

doi:10.1371/journal.pcbi.1004922.g004

Fig 5. Equivalent electrical circuit of a vesselsegment (light gray) located between two branch points.
Branch point conductance is modeled as triangle-shaped couplingGg1–Gg2–Gg3. A vessel segment consists
of several units (dark gray) whose length is equal to the length of an endothelial cell with the conductanceGc

and the capacitance Cc. Units are coupled via gap junctions with conductanceGg. Details are given in
Materials and Methods.

doi:10.1371/journal.pcbi.1004922.g005
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Electrotonic propagation of the electric current originating from themacula densa through
vascular segments is described by the following equations:

For segment sites that are connected to nephrons:

Cu

dV
dt

¼ In þ GgðVprev � VÞ � GuðV � VrestÞ; ð5Þ

where In stands for the current induced by themacula densa signal and transmitted to the ves-
sel. Vprev describes the voltage in the previous (downstream) adjacent unit of the same segment.
Vrest is the resting membrane potential, Cu is the unit capacitance. Gu and Gg are the unit and
gap junction conductance, respectively.

For inner units of the segment:

Cu

dV
dt

¼ GuðVprev þ Vnext � 2VÞ � GuðV � VrestÞ; ð6Þ

where Vprev and Vnext denote potentials for downstream and upstream adjacent units, respectively.
At the branch point (downstream of the vessel):

Cu

dV
dt

¼ Gg1ðV1 � VÞ þ Gg2ðV2 � VÞ þ GgðVnext � VÞ � GuðV � VrestÞ; ð7Þ

where V1,2, and Gg1,2 represent the voltages at the ends of connected vessel segments and gap
junction conductances, respectively. If the branch point is upstream relative to the current seg-
ment then Vprev should be used instead of Vnext. If the current segment has branch points from
both sides then Gg(Vnext − V) should be replaced with the corresponding conductances and
voltages for the connected vessels. For the root segment Gg1(V1 − V) + Gg2(V2 − V) should be
replaced with specific values for G and resting values for V1 and V2.

Nephron model
The model of the individual nephron consists of six coupled ordinary differential equations,
each representing an essential physiological relation and a number of algebraic functions. A
sketch of the main components of the nephron model is given in Fig 6. The six coupled differ-
ential equations are (see Material and Methods, [38] for details):

dPt

dt
¼ Ffilt � Freab � FHen

h i
=Ctub ð8Þ

dr
dt

¼ vr ð9Þ

dvr
dt

¼ Pav � Peq

o
� K � vr ð10Þ

dX1

dt
¼ FHen �

3

T
� X1 ð11Þ

dX2

dt
¼ 3

T
� ðX1 � X2Þ ð12Þ

dX3

dt
¼ 3

T
� ðX2 � X3Þ ð13Þ
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The first equation of the model (eq 8) represents the pressure variations in the proximal
tubule in terms of the in- and outgoing fluid flows. Here, Ffilt is the single-nephron glomerular
filtration rate and Ctub is the elastic compliance of the tubule. The flow into the loop of Henle is
determined by the difference (Pt − Pd) between the proximal and the distal tubular pressures
and by the flow resistance RHenle. The reabsorption in the proximal tubule Freab is assumed to
be constant.

Eqs 9 and 10 describe the dynamics of the afferent arteriole. Here, r represents the inner
radius of the vessel and v is its rate of change. ω is a measure of the mass relative to the elastic
compliance of the arteriolar wall, Pav denotes the average pressure in the arteriole, and Peq is
the value of this pressure for which the arteriole is in equilibrium with its present radius and
level of muscular activation. The expressions for Ffilt, Pav and Peq involve a number of algebraic
equations that must be solved along with the integration.

The remaining equations (eqs 11–13) in the single-nephron model describe the delay T in
the TGF regulation. This delay arises both from the transit time through the loop of Henle and
from the cascaded enzymatic processes between the macula densa cells and the smooth muscle
cells that control the contraction of the afferent arteriole.

Although the model is significantly simplified and does not contain a detailed description of
all physiological mechanisms, its dynamical features include TGF oscillations, the response of
afferent arteriole to increasing inlet pressure and, as a consequence, the autoregulation of effer-
ent arteriolar blood flow (Fig 7).

Results

Topological properties of the network
We used the algorithms described above to construct models of both the renal vascular tree
and a simple asymmetric bifurcating tree.

Simple asymmetric bifurcating tree. Fig 8 shows an example of a simulation of the ABT
structure based on the experimental data described by Nordsletten et al. [15]. The plots in the

Fig 6. Sketch of the main components of the nephron.Note particularly how the terminal part of the loop
of Henle passes within cellular distances of the afferent arteriole, allowing the TGFmechanism to control the
incoming blood flow in response to the ionic composition of the fluid leaving the loop of Henle.

doi:10.1371/journal.pcbi.1004922.g006
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bottom panel show a high correlation of the simulated structure with the experimental data.
Note, however, the divergence in the relation between daughter and parent vessel diameter in
the simulated and the experimental data. As noted above, the experimental data are grouped
according to Strahler order, and two daughter vessels will not necessarily belong to the same
Strahler order. This is especially likely if the two daughter vessels have a large difference in
diameter. In this case the larger daughter vessel will, on average, be expected to have a greater
Strahler order than the one with the smaller diameter, since there is a greater likelihood for
further downstream bifurcations in the branch coming from the larger daughter vessel. It is
therefore not to be expected that the simulated and experimental distributions will be
identical.

Bifurcating tree with exponentially distributed afferent arterioles. An example of a simula-
tion of a KSABT structure is shown in Fig 9. Note that there is an even more pronounced dif-
ference in the dependence of daughter vessel diameter on parent vessel diameter compared to
the experimental data [15]. The reason is that KSABT structure allows afferent arterioles to
branch from any vessel (except the renal artery) and recalculates the vessel diameter after each
bifurcation in accordance with Murray’s law. This algorithm leads to segmentation of large
vessels so that at the end of each segment the vessel divides into an afferent arteriole and a seg-
ment with a slightly reduced diameter. The distribution of the distances between afferent arte-
rioles (Fig 9, bottom panel) is based on the experimental data obtained from optical clearing
methods [16, 17].

Notice that the number of afferent arterioles in the ABT and KSABT structures differ even
though the parameters were similar in the two cases (see Table 1), and that in the KSABT struc-
ture the vessels feeding the afferent arterioles are, on average, wider than for the ABT structure
where afferent arterioles appear only at the top of the tree. The larger diameter of the feeding
vessels in the KSABT structure reduces the hemodymamic resistance of the vessels and, conse-
quently, the pressure drop from the renal artery to afferent arterioles will be smaller when com-
pared to that in the ABT structure.

Fig 7. Autoregulation dynamics of the model.Relative response of afferent the arteriole radius r (left panel) and flow in the efferent
arteriole Feff (right panel) on increasing arterial pressure Pa. Well pronounced regulation is observed within the range of 10–13 kPa.

doi:10.1371/journal.pcbi.1004922.g007
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Dynamical properties of the network
As discussed above, nephrons can interact with each other via hemodynamic and/or electrical
coupling. These interactions can lead to different dynamical patterns, and can affect the physi-
ological properties of the whole kidney. The vascular structure is important for the characteris-
tics of both types of interactions. It affects the electrical properties of the vascular tree in the
following ways:

• The longer the distance between the sites where the electrical signal is generated and received,
the weaker the signal. Hence, nephrons with long afferent arterioles and longer distances
between each other show weaker interaction compared to nephrons connected via shorter
distances (Fig 10) [39];

Fig 8. Simulated vascular structure based on the datapublished by Nordsletten et al [15] with afferent arterioles only at the top of
bifurcating tree (ABT). Top panel: 3D visualizations of the vascular trees with Dstop = 22μm and Dinitial = 200μm and 70μm (left and right panels,
respectively). Bottom panel: Vessel length as a function of the vessel diameter (left) and daughter vessel diameter as a function of the parent
vessel diameter (right) for simulations (blue) and data described in Ref [15] (red). Note that the difference between simulated and experimental
results for the daughter vessel diameter is related to the fact that we use Murray’s law to calculate the diameter of the second daughter vessel.

doi:10.1371/journal.pcbi.1004922.g008

Modeling of Kidney Hemodynamics: Probability-Based Topology of an Arterial Network

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004922 July 22, 2016 12 / 28



• At a branch point, the signal propagates better to the vessel with the larger diameter. This
leads to weaker interaction between nephrons whose afferent arterioles originate from large
vessels, while the strongest coupling is observed at the top of the tree, where the diameters of
the daughter vessels are of similar scale.

Fig 9. Simulated vascular structure with exponentialdistribution of afferent arterioles along the tree
(KSABT). Top panel: 3D visualizations of vascular trees with Dstop = 22 μm and Dinitial = 200 μm and 70 μm
(left and right panels, respectively). Middle panel: Vessel length as a function of the vessel diameter (left) and
daughter vessel diameter as a function of the parent vessel diameter (afferent arterioles excluded from
calculations)(right) for simulation (blue) and data described in Ref [15] (red). Bottom panel: Probability
distribution of the distances between two neighboring afferent arterioles obtained from simulations (blue) and
the approximation to the experimental data (red).

doi:10.1371/journal.pcbi.1004922.g009

Table 1. Example of statistical data on afferent arterioles in ABT and KSABT. Simulations were done at the same parameters Dstop = 22 μm and Dinitial =
530 μm. RA denotes renal artery, AA denotes afferent arteriole.

Structure Diameter RA, μm Number AA Std. Dev. Diameter AA, μm Std. Dev., μm

ABT 530 20188 - 19.37 1.36

KSABT 530 32127 - 19.25 1.81

doi:10.1371/journal.pcbi.1004922.t001
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To estimate the effect of vessel dimensions on the electrical coupling on a pair of nephrons,
we performed simulations for a minimal branching structure consisting of one branch point
and three vessels, a root vessel and two afferent arterioles. The lengths of the root vessel and
the first afferent arteriole are fixed at 300 μm and 50 μm, respectively, and the diameter of the
afferent arteriole is fixed at 20 μm. The length and diameter of the second afferent arteriole are
varied from 50 to 250 μm and from 20 to 40 μm, respectively. The root vessel diameter is
adjusted according to Murray’s law. Fig 10 illustrates how the coupling strength depends on
the length and diameter of the second afferent arteriole. Inspection of the figure shows that
electrical interaction in a tree with short afferent arterioles leads to synchronization of nephron
dynamics (right bottom panel), while in case of long afferent arterioles the nephrons are desyn-
chronized (right top panel).

A characteristic feature of the renal vascular tree is that the pressure drop from the renal
artery to the start of the afferent arteriole is small, whereas there is a relatively large pressure
drop across the afferent arteriole [40]. This allows for efficient regulation of the glomerular fil-
tration pressure through regulation of the resistance of the afferent arteriole.

Simulations on the two types of vascular structures show that the vascular structure with
exponentially distributed AAs (KSABT) has much lower pressure drop compared to the ABT.
Simulations for a small branch of 40 μm of initial diameter (Fig 11) with realistic hemodynamic
resistances and root feeding pressure Proot clearly show that in the case of KSABT (right panel)
the tubular pressure Pt of all nephrons is quite high and TGF oscillations can be observed. For
the ABT, however, the root feeding pressure for the nephrons is low and outside the working
range of the single nephron model that leads to negative values of Pt (left panel). In the neph-
ron model that we use the negative values of tubular pressure are observed when the root feed-
ing pressure is low and cannot balance flows and pressures on the venous side.

Fig 10. Effect of electrotonic interactions. Left panel: Color coded diagram of the strength of electrical signal propagation along afferent arteriole to the
second daughter vessel. Simulations are performed for the vacular network without nephrons (test current was applied to the end of the first daughter
vessel and measured at the end of the second daughter vessel). Right panel: Tubular pressure Pt variations of two neighboring nephrons with�0.05 (top)
and�0.1 strength of electrical interaction (bottom).

doi:10.1371/journal.pcbi.1004922.g010
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The higher pressures in the KSABT structure can be explained by two related factors: (i) the
total number of branching levels is smaller in the KSABT than in the ABT network, and, (ii)
the average diameter of feeding vessels is larger in KSABT, reducing the pressure drop between
the renal artery and the afferent arterioles and providing higher pressure to the nephrons. The
working pressure interval is depicted on the bottom panel of Fig 11. All nephrons in the
KSABT work properly from 8 kPa in the root artery. This allows us to use a realistic pressure

Fig 11. Simulation results for ABT (left) and KSABT (right) forDinitial = 40 μm andDstop = 22 μm. Top panel:
3D visualization of simulated structures. Middle panel: Possible tubular pressure values for each nephron as
function of the feeding pressure. For the ABT structure, the nephrons are inactive for the whole range of the root
feeding pressure, while for the KSABT structure all nephrons are active within a wide range of the root feeding
pressure. Bottom panel: Dynamics of tubular pressure Pt variations in all nephrons for pressure in the feeding
vessel equal to 10 kPa (* 75 mmHg). This pressure level is insufficient for nephrons in the ABT structure to
oscillate while for the KSABT structure the nephrons show oscillatory dynamics. Negative values of tubular
pressure for the ABT structure are the consequence of insufficient pressure in the afferent arteriole to balance
venous and filtration pressure and flow. Tubular pressure shown on the middle and bottom panels is color coded for
each nephron according to the color markers on the top panel.

doi:10.1371/journal.pcbi.1004922.g011
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(around 13–13.5 kPa) in the renal artery. In the case of ABT there is no oscillatory behavior
even at “hypertensive” values of the pressure.

Autoregulation properties of the two types of structures differ. Nephrons in ABT are per-
fused at inadequate pressure to support autoregulation of total efferent flow or glomerular fil-
tration rate (Fig 12, left). In contrast, the structure of KSABT provides nephrons with a higher
pressure, supporting autoregulation at the level of individual nephrons and net flow (Fig 12,
right). A significant shift in nephron feed pressure in KSABT leads to prolonged and smoothed
range of autoregulation for net flows.

Discussion
The systemic circulatory system plays a central role in supplying organs and tissues with oxygen
and nutrients and removing metabolic waste products. On a large scale, the circulatory system
can be viewed as a branching network where larger vessels on the arterial side branch into
smaller and smaller vessels until the capillary level is reached. It is clear however that there are
large differences in the structure of the vascular system among different tissues and organs, and

Fig 12. Comparison of net flow in efferentarterioles and glomerular filtration rate for ABT (left) and KSABT (right) structures shown in Fig 11.
Top panel: Blood flow in efferent arterioles as a function of root pressure. Bottom panel: Glomerular filtration rate as a function of root pressure. Solid
black curves (with left axes) show net blood flow and net glomerular filtration rate. Gray curves (with right axes) represent the same characteristics for
individual nephro-vascular unit. Dashed black lines highlight the region of the strongest autoregulation.

doi:10.1371/journal.pcbi.1004922.g012
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that this difference relates to the specific functions of the tissue and organ. In other words, the
vascular topology is optimized to subserve the specific needs of a given organ or tissue. In skele-
tal muscle, the main need is to allow for large variations in total blood flow so as to match the
supply with demand during muscle work. In other organs, like the brain, there is no need for
large variations in overall flow, but there is a need to redirect flow to local areas where the meta-
bolic activity is high. In the kidney, the critical aspect of the circulation is not only to supply the
tissues with oxygen and nutrients, but rather to support the filtration of plasma at the glomeru-
lus of each nephron. For example, in the human kidneys an amount of fluid corresponding to
approximately 3 times the body weight is filtered every 24 hours. This difference in function
poses restrictions on the design of the vascular system in the specific organs and tissues. Many
diseases, e.g. hypertension and diabetes, affect the vascular system, and the morbidity and mor-
tality of these diseases are to a large extent associated with the diseases’ effects on the vascular
system. The effect of the disease in a given organ is not only the result of the disease process
itself, but also depends on the specific topology of the vascular system in the organ [10].

In recent years several new imaging modalities, e.g. μCT, and confocal microscopy, have
made it possible to obtain images of the entire microcirculation in a given organ [9, 15]. This
has paved the way for a better understanding of the complex interrelationship between organ
function and vascular topology. To obtain a thorough understanding of the role of vascular
topology in organ function it is necessary to combine experimental and modeling approaches,
since many questions cannot be addressed experimentally. In this connection, a major task is
to create realistic models of the vascular tree in a given organ as a basis for further model
studies.

In this study we present new experimental findings of the 3D arterial and afferent arteriolar
structure and we develop a probability-based algorithm for generating such structures from the
data.To study the role of kidney specific vascular structure we also introduce a mathematical
model that describes blood flow dynamics and nephron-to-nephron interactions in the arterio-
nephron network. The simulation results indicate that the arterial structure in the kidney mini-
mizes the pressure drop between the main renal artery and glomeruli, and it affects nephron-
nephron interactions.

One of the main results is that the distances between individual AAs are exponentially dis-
tributed. This conclusion is the result of the analysis of 3D data sets with more than 150 affer-
ent arterioles obtained with the optical clearance method. This result differs from that in most
other organs where the interbranch distance seems to follow a lognormal distribution [31, 32].
Exponential distributions are typically seen in Poisson processes where the time or distance
between events are independent of each other. The genetic/molecular mechanisms that under-
lies such a branching pattern are unknown, and an interesting subject for further theoretical
work. Statistical distributions derived from our data and from the literature [15] form the basis
for our structure generating algorithm.

The microcirculation of the kidney is unusual because it has 2 capillary networks, the glo-
merular capillaries and the peritubular capillaries, connected through the efferent arteriole.
Compared to capillary networks in other organs, the glomerular capillaries operate with high
intravascular pressure, a condition required to to drive the filtration of fluid across the capillary
wall into the lumen of the proximal tubule. The high filtration rate is a prerequisite for the abil-
ity of the kidneys to regulate the volume and composition of the extracellular fluid. When we
used a simple bifurcating tree (the ABT algorithm), it was apparent that with the vessel dimen-
sions reported by Norsletten et al. [15], the pressure drop from the renal artery to the glomeru-
lar capillaries exceeds the value found experimentally [40]. This is not surprising, since in the
ABT the AAs only appear at the terminal branch points of the tree, an assumption that maxi-
mizes the hemodynamic resistance between the renal artery and the glomerulus. In contrast,

Modeling of Kidney Hemodynamics: Probability-Based Topology of an Arterial Network

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004922 July 22, 2016 17 / 28



when afferent arterioles are distributed exponentially across the vascular tree and allowed to
branch from any arterial segment, the resulting pressure in the glomerular capillaries is signifi-
cantly greater, and in a range that is compatible with normal nephron function.

It is of interest to note that only the KSABT algorithm resulted in a realistic number of
nephrons for the whole kidney (Table 1), i.e. around 33,000 [41, 42]. Because the ABT only has
glomeruli at the terminal branches, the number of nephrons becomes much lower than in the
KSABT, where AAs, and thus nephrons, also originates from the larger vessels. For the ABT to
give a realistic number of nephrons, it will be necessary to start it with a vessel of an unrealisti-
cally large diameter.

The topology of the arterial network influences not only the pressure drop along the net-
work, but also electrically mediated nephron-nephron interactions. As shown in Fig 10 signal
propagation depends on the dimensions of the branching vessels. A signal from the macula
densa is conducted through the nephron’s afferent arteriole and, at the next bifurcation, propa-
gates preferentially to the largest diameter branch. A nephron whose AA originates from a
larger vessel will therefore be less efficient in synchronizing with its neighbors than will a neph-
ron at the distal end of the arterial tree, where the vessels tend to be of a similar scale. Previous
studies on nephron-nephron interactions have used a simple bifurcating tree when investigat-
ing the network properties of the renal circulation [23, 24]. Such simplifications, by ignoring
significant structural asymmetries, could therefore overestimate synchronization. Another
important feature is that asymmetrical connections of endothelial cells can lead to anisotropic
propagation of electrical signal between two afferent arterioles and can affect nephron-to-
nephron interaction.

Although our algorithm results in architecturally realistic arterial networks for the renal cir-
culation, the tubular pressure distribution between nephrons is exaggerated, cf. Fig 11. Experi-
mental data has shown that the proximal tubular pressure is quite uniform in nephrons on the
surface of the kidney [43]. This suggests the presence of additional processes that acts to
homogenize the pressure distribution between nephrons. One possibility is that the length, and
thereby the resistance, of the AA may vary according to the branch site, i.e. if the AA branches
from a larger vessel with a high intravascular pressure it may be longer compared to a similar
vessel that from a smaller vessel. At present, there is no data on renal vascular morphology to
test this possibility, and it has therefore not been included in the present algorithm. Another
possibility is that the individual vessels actively adjust their radius to compensate for differ-
ences in the feeding pressures. The AA has a myogenic response [44] that allows it to adjust its
radius in response to changes in the intravascular pressure. An increase in pressure will pro-
voke vasoconstriction, increasing the hemodynamic resistance of vessel, reducing glomerular
pressure towards the control value. This mechanism plays an important role in renal autoregu-
lation of blood flow [45] and is implemented in our model in a simplified way.

An anatomical feature not explicitly included in the present algorithm is the presence of
triplets and quadruplets at the branch sites, as reported in [30]. Such triplets or quadruplets of
AAs mostly occur at the top of the tree, since the small arteries will always split onto two AAs.
We do not explicitly model the population of juxtamedullary nephrons in the present work.
However, it is known that this subpopulation of nephrons predominantly derive their afferent
arterioles from the larger vessels in the arterial network, e.g. the arcuate and subarcuate arteries
[28]. However, the available data does not allow specific modeling of this subpopulation.

In the present work we have chosen to use a simple nephron model [38]. The model,
detailed below, has primitive representations of TGF and the afferent arteriole that cause a sin-
gle combined effect on afferent arteriolar diameter in response to arterial pressure change.
When several copies are combined in a network configuration the model generates interactions
[20, 21, 23] similar to those produced with more detailed representations of TGF and the
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afferent arteriole [24]. Because of the complexity of the network a minimal model such as the
one we use here best serves the purposes of the study by providing the clearest opportunity for
understanding the contributions of the vascular structure. To test stability of the model we ran
simulations for different values of parameters Chdr(0.3–5nL/kPa), β(0.4–0.67), α(12–20). We
found minor quantitative changes but the dynamics of the model with ABT and KSABT struc-
tures remained qualitatively unchanged.

In conclusion, we have demonstrated that the renal vasculature has specific characteristics
that were not taken into account in previous modeling studies. We have developed a new algo-
rithm for generating a renal arterial network using experimental data on the length and radius
distribution of renal vessels. The resultant network topology closely resembles that found in
normal rats. We have found that in the contrast to the simpler known algorithm, the kidney
specific vascular tree (based on our data and from the literature) contained a realistic number
of nephrons, displayed adequate pressure levels in the nephrons, and tended to weaken interac-
tions between nephrons whose afferent arterioles originated from larger vessels compared to
the nephrons on top of the tree.

Materials and Methods

Experiment
All experimental protocols were approved by the Danish National Animal Experiments Inspec-
torate and were conducted in accordance with guidelines of the American Physiological Soci-
ety. A 12 week old Sprague-Dawley rat was anesthetized (intraperitoneal injection of
pentobarbital), a catheter was inserted into the aorta, and the vena cava was opened. The blood
was removed by perfusing the animal with PBS with nifedipine and HEPES to prevent blood
clotting. Thereafter the animal was perfused with biotin (2 mg/ml) that binds to endothelial
cells, washed with PBS and perfused with Alexa-647 Streptavidin (20 mg/ml). The animal was
then fixed with 4% paraformaldehyde in PBS using a pressure of 90 mmHg. The kidneys were
removed and a section of one of the kidneys was clarified according to Erturk et al. [17], using
dehydration steps in THF and final clearing in DBE [16]. Tissue dehydrated by this method
shrinks approximately 20% in each dimension. The kidney slice was scanned with a 633 nm
laser in a Zeiss LSM 710 equipped with a 10X/0.3 NA objective. Two 3D stacks were recorded,
covering 850 x 850 x 497 μm and 850 x 850 x 1018 μm. The second image stack was obtained
with spectral imaging to obtain both green autofluorescence from tubules and the Alexa-633
signal from both vessels and tubuli. The combined image showing tubuli in one channel and
vessels and tubuli in the other was used as input for the segmentation protocol. The dual chan-
nel image was then automatically segmented in the open source image processing package
“FiJi”, using pixel-based segmentation plugin “Trainable Weka Segmentation”. After segmen-
tation the 150 images in the stack were manually corrected in FiJi for missing features and
holes in vessels. The 3D representations (Figs 3 and 13) were performed with open platform
for bioimage informatics “Icy”.

Computational implementation
To build a vascular structure using the present algorithm four distributions are needed: Gddp

(daughter-parent diameter distribution), Gvlvd (vessel length–vessel diameter distribution),
Eaad (distribution of distances between two neighboring AAs) and Gaad (distribution for affer-
ent arterioles diameter), where Gddp, Gvlvd and Gaad are assumed to be Gaussian distributions
and Eaad is an exponential distribution. All distributions were obtained from experimental
data. Two parameters are used to control the structure size: Dinitial describes the diameter of
the first vessel and Dstop is the vessel diameter where bifurcations stop.
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This algorithm combines a recursively bifurcating algorithm (for a simple bifurcating struc-
ture) and recursively bifurcating algorithm with additional segmentation (for a structure with
exponentially distributed distances between AAs) (Fig 14).

Simple recursively bifurcating algorithm

1. Calculate the length of the first vessel using Dinitial and Gvlvd distribution;

2. Calculate the diameter of the first daughter vessel Ddv1 using Gddp;

3. Calculate the second daughter diameter Ddv2 using the parent diameter, the first daughter
diameter and Murray’s law;

4. If the first daughter diameter is bigger than Dstop, consider the first daughter vessel as a new
parent vessel;

5. Repeat steps 2, 3, 4 until Ddv1 becomes less than or equal to Dstop;

6. If Ddv2 is larger than Dstop, consider this daughter vessel as a new parent vessel. If it is less,
go one level below the bifurcation and repeat step 6;

7. Repeat steps 2, 3, 4, 5, 6 until there are no vessels whose diameter is larger than Dstop and
without daughter.

Additional segmentation

1. Find a position of the next AA branching using Eaad and the length of the current vessel.

Fig 13. The image shows the full kidney stack afterreconstruction. The dimensions of the stack are 850
x 850 x 1018 μm. The axis labels represent the original coordinates in μm, but note that the reconstructed
data has shrunk about 20% in all dimensions compared to living tissue.

doi:10.1371/journal.pcbi.1004922.g013
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Fig 14. Functional diagram of the algorithm. Black arrows show common steps to create both structures. Green arrows are the main
steps of recursively bifurcating algorithm for creation of ABT. Red arrows are the main steps for recursively bifurcating algorithm with
additional segmentation for KSABT. Dinitial and Dstop are parameters;Gddp,Gvlvd,Gaad, and Eaad are the distributions obtained from
experimental data; Dp, Ddv1, Ddv2 are the diameter of current segment of the parent vessel, and the first and second daughter vessel
diameters; L is the length of the current vessel; X is the position of AA origin along the vessel; S is a shift of AA position that accounts for
the distance to the neighboring AA located on the other (e.g. parent) vessel; Daff denotes the diameter of the afferent arteriole.

doi:10.1371/journal.pcbi.1004922.g014
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2. If the previous AA branches from the other vessel (e.g., parent vessel), use a shift value (i.e.,
accumulated distances to AA on the other vessel). The found position denotes the end of
the current segment. If the calculated position is not on the current vessel, update the shift
value and stop branching of this vessel, otherwise continue;

3. Add AA to the end of the segment with the diameter based on Gaad;

4. Calculate the diameter of the next segment using Murray’s law, segment diameter and AA
diameter;

5. If the next segment diameter becomes smaller than Dstop, stop branching of this vessel.

Description of electrical coupling
We simplified the model described in Ref. [46] with some additional assumptions:

1. All related processes in the endothelium are much faster than the TGF feedback and, thus,
all membrane potentials are instantly adjusted to the signal produced by themacula densa;

2. We use a linear representation of the whole-cell conductance. This allows us to calculate a
matrix of connectivity coefficients between nephrons, instead of running an additional inte-
gration loop for each integration step of the whole model;

3. At the branch points, cells from each vessel split in numbers according to the diameters of
the other two vessels. The conduction of such a connection is proportional to the number of
connected cells from both sides;

4. We neglect latitudinal variability of endothelial membrane potentials, but still take into
account longitudinal discreteness of the vascular bed.

Fig 15. Schematic presentation of electrical coupling. A cross-section of a three vessel segment at the
branch point with N endothelial cells and gap junction conductancesGg.

doi:10.1371/journal.pcbi.1004922.g015

Modeling of Kidney Hemodynamics: Probability-Based Topology of an Arterial Network

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004922 July 22, 2016 22 / 28



This allows us to build a computationally simple, but physiologically relevant, model for the
propagation of the electrical signals generated by the nephrons.

Fig 15 represents the main notations of the coupling. Each endothelial cell is described by
the whole-cell conductance Gc which can be linear or nonlinear, and instantaneous (very fast
activated) or inertial (governed by the dynamics of gating variables). We use the simplest repre-
sentation in the form of an instantaneous and linear whole-cell conductance Gc (assumptions 1
and 2) being connected in parallel with the whole-cell capacitance Cc and coupled with neigh-
bors by means of gap junction conductances Ggj.

There is considerable variability with regard to the reported morphological and electrical
parameters of endothelial cells. For the present work we chose parameters to be in accordance
with those in Ref. [46]. We assume that a vessel segment of diameter D contains N = πD/Wc

endothelial cells in its cross-section, whereWc � 5μm is a typical width of an individual cell.
Similarly, we assume that the length L of the vessel segment is composed ofM = L/Lc endothe-
lial cells, where Lc� 50μm is a typical effective length of an endothelial cell. The length of an
endothelial cell is around 100 μm. However, due to overlap of the ECs in the vessel wall, the
effective length is approximately half the the real length of the cell [47].

We ignore possible spatial inhomogeneity of voltage distribution in a vessel cross-section.
Thus, we describe each unit (piece of vessel with length Lc) with its unit conductance Gu = NGc,

Table 2. Table of constants and parameters.

Parameter Meaning Value

Proot Arterial pressure in the root of the tree [kPa] 13.3

Ctub Compliance of the proximal tubule [nL/kPa] 3.0

Ha Arterial hematocrit 0.5

Pv Efferent arterial pressure [kPa] 1.3

Pd Distal tubular hydrostatic pressure [kPa] 0.6

FHen0 Henle’s loop equilibrium flow [nL/s] 0.2

Freab Proximal tubular reabsorption rate [nL/s] 0.3

RHen Hydrodynamic resistance of the loop of Henle [kPa × s/nL] 5.3

Ra0 Afferent arteriolar equilibrium resistance [kPa × s/nL] 2.4

Re Efferent arteriolar resistance [kPa × s/nL] 1.9

ω Frequency coefficient of the damped oscillator [kPa × s2] 20.0

K Damping coefficient [1/s] 0.04

β Non-variable fraction of afferent arteriolar resistance 0.67

Ψmin Lower activation limit of TGF 0.20

Ψmax Upper activation limit of TGF 0.44

Ψeq Equilibrium activation 0.38

Ca Afferent plasma protein concentration [g/L] 54.0

a Protein concentration parameter [kPa × L/g] 21.7e−3

b Protein concentration parameter [kPa × L2/g2] 0.39e−3

T Transport delay in the loop of Henle [s] 13.5

α Tubuloglomerular feedback amplification 20.0

Lc Length of endothelial cell [μm] 50

Wc Width of endothelial cell [μm] 5

Ggj Gap junction conductance of endothelial cell [1/MOhm] 1/3

Gc Conductance of endothelial cell [1/MOhm] 1/8

Cc Endothelial cell capacitance [pF] 20

Vrest Cell membrane resting potential [mV] −40

Chdr Compliance of blood vessels [nL/kPa] 3.0

doi:10.1371/journal.pcbi.1004922.t002
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unit capacitance Cu = NCc, and total gap junction conductance Gg = NGgj. A vessel segment is
represented by a chain ofM such coupled units.

At the branch (bifurcation) point three vessel segments are connected to each other. At this
point we assume a triangle-shaped coupling geometry as shown in Fig 15. To calculate Gg1, Gg2,
Gg3 we use assumption 3 listed above. Cells from the i-th segment connected to the j-th and k-th
segments are split in two parts according to circumference (or equivalently—diameters) of the j-
th and k-th segments. So, Ni = Nj + Nk, whereNj/Nk = Dj/Dk andN is the number of cells which
is always an integer. However, this rule gives different number of cells for different vessels at the
same branch point. For example, the number of cells Nj−k from j-th to k-th segment will differ
from the number of cellsNk−j from the k-th to j-th segment. The existence and value of this mis-
match can not be predicted in advance. Thus, we assume that the number of gap junctions
between two segments is equal to the arithmetic average between the number of cells in the con-
nected vessels. In this way we have some intermediate, but symmetric value for inter-segment
coupled cells:Njk = Nkj = (Nj−k + Nk−j)/2. The conductance of such coupling is Ggjk = Ggkj = NjkGgj.

At the root of the tree the same rule for the conductance is applied. However, we assume
that the diameter of vessels downstream from the root is large enough, so that each endothelial
cell from the root segment will be connected to two endothelial cells from downstream vessels.
This gives us Ggroot = 2NiGgj for each connected vessel, where Ni is the number of cells in the cir-
cumference of the root segment.

Description of nephron model
Physiological justification for all equations and expressions are given in Ref [38]. Here we focus
on computational implementation of the model.

Pt, r, vr, X1, X2, X3 denote dynamical variables of the system.

FHen, FFilt, Pg, Pav, Peq, Pel, Pact,C, Ra, R, Ce are functions that have physiological meaning and
are needed to calculate derivatives.
A, B, C, D are coefficients of the 3rd order polynomial equation for the efferent plasma pro-
tein concentration, Ce.

Pv, Pd, Ra0, Re, RHen, Ctub,Ha, Freab, FHen0, Ca, a, b, ω, K, β,Cmax,Cmin,Ceq are constants.

Pa, T, α are control parameters. Full list of parameters can be found in Table 2.

Example of initial condition is: Pt = 1.7923 kPa, r = 1.0221, vr = −0.0149, X1 = 0.9177, X2 =
0.8903, and X3 = 0.8695.

The functions that are used in the model are described below.
Flow in the loop of Henle:

FHen ¼
Pt � Pd

RHen

ð14Þ

Preglomerular resistance

Ra ¼ Ra0 � bþ 1� b
r4

� �
ð15Þ

R ¼ Ra0

Ra

ð16Þ

We solve the third-order equation AC3
e þ BC2

e þ CCe þ D ¼ 0 to find Ce, the efferent arteriolar
plasma protein concentration. For appropriate parameter valse the equation has a single,
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positive solution. This solution is determined numerically for each integration step. A, B, C, D
are found from the model equations:

A ¼ bþ R� b� Ha ð17Þ

B ¼ aþ R� b� Ca � ð1� HaÞ þ R� a� Ha ð18Þ

C ¼ Pt � Pv þ R� a� Ca � ð1� HaÞ þ R� ðPt � PaÞ � Ha ð19Þ

D ¼ ðPt � PaÞ � R� Ca � ð1� HaÞ ð20Þ
Functions of plasma protein concentrations:

Pg ¼ b� C2
e þ a� Ce þ Pt ð21Þ

Pav ¼
1

2
� Pa � ðPa � PgÞ � b� Ra0

Ra

þ Pg

� �
ð22Þ

FFilt ¼ ð1� HaÞ � 1� Ca

Ce

� �
� Pa � Pg

Ra

ð23Þ

The tubuloglomerular feedback functionC:

C ¼ Cmax �
Cmax �Cmin

1þ Ceq�Cmin

Cmax�Ceq
� exp a� 3�X3

T�FHen0
� 1

� �� � ð24Þ

The depolarisation of the cells in the afferent arteriole due to the TGF signal from themacula
densa is assumed to be directly proportional toC.

Equilibrium pressure:

Pel ¼ 1:6� ðr � 1Þ þ 2:4� eð10�ðr�1:4ÞÞ ð25Þ

Pact ¼
4:7

1þ eð13�ð0:4�rÞÞ þ 7:2� r þ 6:3 ð26Þ

Peq ¼ Pel þC� Pact ð27Þ

Note that the parameter Pa in the single nephron-model becomes a variable in the nephro-arte-
rial network.
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